Citation:
CHEN Kunfeng, XUE Dongfeng. Evaluation of Specific Capacitance of Colloidal Ionic Supercapacitor Systems[J]. Chinese Journal of Applied Chemistry,
;2016, 33(1): 18-24.
doi:
10.11944/j.issn.1000-0518.2016.01.150308
-
Although they show high power density, supercapacitors often suffer from low energy density. As a new kind of supercapacitors, colloidal ion supercapacitors that include various transition metal cations and rare earth cations, such as Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Sn2+, Sn4+, La3+, Ce3+, Er3+, Yb3+, etc, show both high energy density and high power density. Proper evaluation of specific capacitance of colloidal ion supercapacitors can deepen our understanding of the electrochemical mechanism of electroactive cations in pseudocapacitive electrode materials. This review firstly outlines the basic concept of colloidal ion supercapacitors and in situ coprecipitation synthesis methods. Then the specific capacitance based on active cations(named cationic capacitance) is used to evaluate the performance of colloidal ion supercapacitors. We then calculate the specific capacitances on the basis of hydroxides and oxides(named hydroxide capacitance and oxide capacitance), which are traditional evaluation methods for supercapacitors. Compared with three kinds of specific capacitances, cationic capacitance can really reflect the intrinsic reaction mechanism of pseudocapacitive materials. It is expected that colloidal ion supercapacitors can overcome the technical bottleneck of the existing electrochemical energy storage devices and be the next-generation high-energy storage devices.
-
-
-
[1]
[1] Chen K,Song S,Liu F,et al.Structural Design of Graphene for Electrochemical Energy Storage[J].Chem Soc Rev,2015,44(17):6230-6257.
-
[2]
[2] XU Guorong,LI Yubing,DONG Wenhao,et al.Preparation of Mn3O4 Nanoparticles in Alkaline Solution and Their Application in Supercapacitor[J].Chinese J Appl Chem,2015,32(6):701-707(in Chinese).徐国荣,李钰冰,董文豪,等.碱性介质中制备纳米四氧化三锰及其超级电容特性[J].应用化学,2015,32(6):701-707.
-
[3]
[3] Augustyn V,Simon P,Dunn B.Pseudocapacitive Oxide Materials for High-Rate Electrochemical Energy Storage[J].Energy Environ Sci,2014,7(5):1597-1614.
-
[4]
[4] CHEN Kunfeng,XUE Dongfeng.Chemical Reaction and Crystallization Control on Electrode Materials for Electrochemical Energy Storage[J].Sci China:Technol Sci,2015,45(1):36-49(in Chinese).陈昆峰,薛冬峰.化学反应和结晶控制的电化学储能电极材料[J].中国科学:技术科学,2015,45(1):36-49.
-
[5]
[5] HU Xiaozhou,WANG Jing,TANG Jing.Synthesis of Mixture Salt Activated Porous Carbon from Scaphium Scaphigerum and Its Performance as Super Capacitor Electrode Material[J].Chinese J Appl Chem,2015,32(5):591-596(in Chinese).呼小洲,王静,唐靖.混合盐活化胖大海基多孔炭的制备及超级电容器电极材料性能[J].应用化学,2015,32(5):591-596.
-
[6]
[6] CHEN Kunfeng,YANG Yangyang,CHEN Xu,et al.Study of Transition Metal-Based Material for Electrochemical Energy Storage[J].J He'nan Univ(Nat Sci),2014,44(4):398-415(in Chinese).陈昆峰,杨阳阳,陈旭,等.过渡金属材料的电化学储能性能研究[J].河南大学学报(自然科学版),2014,44(4):398-415.
-
[7]
[7] LIU Yaliu,YUAN Zhongzhi,LIU Liling.Preparation and Electrochemical Characteristics of Manganese Dioxide/graphene Composite Paper Electrode[J].Chinese J Appl Chem,2015,32(7):843-848(in Chinese).刘亚柳,袁中直,刘俐伶.二氧化锰/石墨烯纸电极的制备及其电化学性能[J].应用化学,2015,32(7):843-848.
-
[8]
[8] Chen K F,Xue D F.Rare Earth and Transitional Metal Colloidal Supercapacitors[J].Sci China Technol Sci,2015,58:1768-1778.
-
[9]
[9] Chen K F,Xue D F.Searching for Electrode Materials with High Electrochemical Reactivity[J].J Materiomics,2015,1(3):170-1787.
-
[10]
[10] Lu Q,Chen J,Xiao J.Nanostructured Electrodes for High-Performance Pseudocapacitors[J].Angew Chem Int Ed,2013,52(7):1882-1889.
-
[11]
[11] Chen K F,Xue D F.Ionic Supercapacitor Electrode Materials:A System-Level Design of Electrode and Electrolyte for Transforming Ions into Colloids[J].Colloid Interface Sci Commun,2014,1(1):39-42.
-
[12]
[12] Chen X,Chen K F,Wang H,et al.Crystallization of Fe3+ in an Alkaline Aqueous Pseudocapacitor System[J].Cryst Eng Comm,2014,16(29):6707-6715.
-
[13]
[13] Chen K F,Xue D F.Crystallization of Tin Chloride for Promising Pseudocapacitor Electrode[J].CrystEngComm,2014,16(21):4610-4618.
-
[14]
[14] Chen K F,Xue D F.YbCl3 Electrode in Alkaline Aqueous Electrolyte with High Pseudocapacitance[J].J Colloid Interface Sci,2014,424(1):84-89.
-
[15]
[15] Chen K F,Xue D F.Formation of Electroactive Colloids via In-Situ Coprecipitation under Electric Field:Erbium Chloride Alkaline Aqueous Pseudocapacitor[J].J Colloid Interface Sci,2014,430(1):265-271.
-
[16]
[16] Chen K F,Xue D F.Water-Soluble Inorganic Salt with Ultrahigh Specific Capacitance:Ce (NO3)3 Can be Designed as Excellent Pseudocapacitor Electrode[J].J Colloid Interface Sci,2014,416(1):172-176.
-
[17]
[17] Chen K F,Xue D F,Komarneni S.Colloidal Pseudocapacitor:Nanoscale Aggregation of Mn Colloids from MnCl2 under Alkaline Condition[J].J Power Sources,2015,279(1):365-371.
-
[18]
[18] Chen K F,Yang Y,Li K,et al.CoCl2 Designed as Excellent Pseudocapacitor Electrode Materials[J].ACS Sustain Chem Eng,2014,2(3):440-444.
-
[19]
[19] Chen X,Chen K F,Wang H,et al.Functionality of Fe (NO3)3 Salts as Both Positive and Negative Pseudocapacitor Electrodes in Alkaline Aqueous Electrolyte[J].Electrochim Acta,2014,147(1):216-224.
-
[20]
[20] Chen X,Chen K F,Wang H,et al.A Colloidal Pseudocapacitor:Direct Use of Fe (NO3)3 in Electrode can Lead to a High Performance Alkaline Supercapacitor System[J].J Colloid Interface Sci,2015,444(1):49-57.
-
[21]
[21] Chen K F,Yin S,Xue D F.Binary AxB1-x Ionic Alkaline Pseudocapacitor System Involving Manganese,Iron,Cobalt,and Nickel:Formation of Electroactive Colloids via In-Situ Electric Field Assisted Coprecipitation[J].Nanoscale,2015,7(3):1161-1166.
-
[22]
[22] Chen K F,Song S,Li K,et al.Water-Soluble Inorganic Salts with Ultrahigh Specific Capacitance:Crystallization Transformation Investigation of CuCl2 Electrodes[J].CrystEngComm,2013,15(47):10367-10373.
-
[23]
[23] Lu Z,Chang Z,Zhu W,et al.Beta-phased Ni (OH)2 Nanowall Film with Reversible Capacitance Higher than Theoretical Faradic Capacitance[J].Chem Commun,2011,47(34):9651-9653.
-
[24]
[24] Sathiya M,Rousse G,Ramesha K,et al.Reversible Anionic Redox Chemistry in High-Capacity Layered-Oxide Electrodes[J].Nat Mater,2013,12(9):827-835.
-
[25]
[25] Simon P,Gogotsi Y.Materials for Electrochemical Capacitors[J].Nat Mater,2008,7(11):845-854.
-
[26]
[26] Beidaghi M,Gogotsi Y.Capacitive Energy Storage in Micro-Scale Devices:Recent Advances in Design and Fabrication of Microsupercapacitors[J].Energy Environ Sci,2014,7(3):867-884.
-
[27]
[27] Aravindan V,Gnanaraj J,Lee Y,et al.Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors[J].Chem Rev,2014,114(23):11619-11635.
-
[1]
-
-
-
[1]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[2]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[3]
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
-
[4]
Huayan Liu , Yifei Chen , Mengzhao Yang , Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063
-
[5]
Guoze Yan , Bin Zuo , Shaoqing Liu , Tao Wang , Ruoyu Wang , Jinyang Bao , Zhongzhou Zhao , Feifei Chu , Zhengtong Li , Yusuke Yamauchi , Saad Melhi , Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006
-
[6]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[7]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[8]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
-
[9]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021
-
[10]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[11]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[12]
Ziheng Zhuang , Xiao Xu , Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040
-
[13]
Liuchuang Zhao , Wenbo Chen , Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079
-
[14]
Jianmin Hao , Ruifeng Wu , Ying Wang , Yijia Bai , Xuechuan Gao , Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103
-
[15]
. Cover and Table of Contents for Vol.40 No. 12. Acta Physico-Chimica Sinica, 2024, 40(12): -.
-
[16]
. . University Chemistry, 2024, 39(2): 0-0.
-
[17]
. . University Chemistry, 2024, 39(3): 0-0.
-
[18]
. . University Chemistry, 2024, 39(4): 0-0.
-
[19]
. . University Chemistry, 2024, 39(5): 0-0.
-
[20]
. . University Chemistry, 2024, 39(6): 0-0.
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(305)
- HTML views(37)