Citation: XUE Shouqing, LIU Qinghua. Preparation of Polythiophene/Polypyrrole/TiO2 Composite Conductive Polymers by Solid-state Method and Its Anti-corrosion Properties for Stainless Steel[J]. Chinese Journal of Applied Chemistry, ;2016, 33(1): 98-102. doi: 10.11944/j.issn.1000-0518.2016.01.150195 shu

Preparation of Polythiophene/Polypyrrole/TiO2 Composite Conductive Polymers by Solid-state Method and Its Anti-corrosion Properties for Stainless Steel

  • Corresponding author: XUE Shouqing, 
  • Received Date: 11 June 2015
    Available Online: 21 October 2015

    Fund Project:

  • Polythiophene(PTH)/Polypyrrole(PPY)/TiO2 conductive polymer composites materials were prepared by chemical solid-phase oxidation reaction in the presence of TiO2 nanoparticles and ferric chloride at room temperature. X-ray crystallography(XRD), scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FT-IR), thermogravimetric analysis(TG) and electrochemical impedance spectroscopy(EIS) were employed to characterize the morphology, thermal stability and anti-corrosion properties of the composites with different dopping amounts of nano-TiO2. PTH/PPy/6% TiO2 conductive polymer film at the application temperature(20~300℃) meets the anti-corrosion requirements to prevent the stainless steel corrosion with a 0.8 V potential higher than the free corrosion potential of bare stainless steel, while the corrosion current densities are lower two orders of magnitude. Nano-TiO2 improves the anode protection and the anti-corrosion properties of the PTH/PPY material. Furthermore, nano-TiO2 bends the polymer tightly to increase the mechanical properties of the composites by reducing membrane defects.
  • 加载中
    1. [1]

      [1] Huang J,Liu Y,Yuan J H,et al.Al/Al2O3 Composite Coating Deposited by Flame Spraying for Marine Applications:Alumina Skeleton Enhances Anti-Corrosion and Wear Performances[J].J Therm Spray Technol,2014,23(4):676-683.

    2. [2]

      [2] Zhou D M,Dai Y Q,Shiu K K.Poly (phenylenediamine) Film for the Construction of Glucose Biosensors Based on Platinized Glassy Carbon Electrode[J].J Appl Electrochem,2010,40(11):1997-2003.

    3. [3]

      [3] Jiang L,Pan S S,Lu J B,et al.Magnetic Performance and Corrosion Resistance of Electroless Plating CoWP Film[J].Rare Met,2012,(3):264-271.

    4. [4]

      [4] Xu J X,Jiang L H,Wang W L,et al.Effectiveness of Inhibitors in Increasing Chloride Threshold Value for Steel Corrosion[J].Water Sci Eng,2013,6(3):354-363.

    5. [5]

      [5] XU Hui,WANG Xinying,LIU Xiaoyu.Preparation and Performance of Composite Film of PANI/PPY[J].Corros Sci Prot Technol,2012,24(2):127-131(in Chinese).徐慧,王新颖,刘小育.聚苯胺/聚吡咯复合薄膜的制备及其抗腐蚀性能研究[J].腐蚀科学与防护技术,2012,24(2):127-131.

    6. [6]

      [6] Li Y,Yang J.Effect of Electrolyte Concentration on the Properties of the Electropolymerized Polypyrrole Films[J].J Appl Polym Sci,1997,65(13):2739-2744.

    7. [7]

      [7] Wang Y,Shi Z Q,Huang Y,et al.Supercapacitor Devices Based on Graphene Materials[J].Phys Chem C,2009,113(30):13103-13107.

    8. [8]

      [8] XUE Shouqing.Inhibition Performance of PPy/Pani Composite conductive polymers[J].Chinese J Appl Chem,2013,30(2):203-207(in Chinese).薛守庆.聚吡咯/聚苯胺复合型导电聚合物防腐蚀性能[J].应用化学,2013,30(2):203-207.

    9. [9]

      [9] Lim V W L,Kang E T,Neoh K G.Determination of Pyrrole-aniline Copolymer Compositions by X-ray Photoelectron Spectroscopy[J].Appl Surf Sci,2001,181(3/4):317-326.

    10. [10]

      [10] Bekir S,Muzaffer T.Electrochemical Copolymerization of Pyrrole and Aniline[J].Synth Met,1998,94(2):221-227.

  • 加载中
    1. [1]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    7. [7]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    11. [11]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    12. [12]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    13. [13]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    14. [14]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    15. [15]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    16. [16]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    17. [17]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    18. [18]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    19. [19]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    20. [20]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

Metrics
  • PDF Downloads(1)
  • Abstract views(266)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return