Citation: SUN Gong-Wei, HONG Wei-Zhe, ZHANG Yu-Qing, HU Zhi-An, XING Zhi, ZHANG Si-Chun, ZHANG Xin-Rong. Development of Multiplex Immunoassay Based on Inductively Coupled Plasma Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2017, 45(12): 1786-1794. doi: 10.11895/j.issn.0253-3820.171324 shu

Development of Multiplex Immunoassay Based on Inductively Coupled Plasma Mass Spectrometry

  • Corresponding author: ZHANG Xin-Rong, xrzhang@mail.tsinghua.edu.cn
  • Received Date: 12 October 2017
    Accepted Date: 4 November 2017

    Fund Project: the National Natural Science Foundation of China 21621003This work was supported by the National Natural Science Foundation of China (Nos. 21390410, 21621003)the National Natural Science Foundation of China 21390410

Figures(8)

  • Immunoassay is of great importance in the field of clinical detection. Our group proposes the inductively coupled plasma mass spectrometry (ICP-MS) based immunoassay. Multiplex immunoassay can be realized by stable isotope tagging strategy combined with ICP-MS detection. Since then, large amount of researches in this field have been made at home and abroad, and the method has been proved applicable to the analysis of biological small molecules, proteins, nucleic acids and cells. In this article, the history and development of immunoassay, the characters of ICP-MS based immunoassay, single component and multiplex immunoassay, and the magnetic immunoassay that is recently fast developed are reviewed. The prospect of the developing tendency is also anticipated, hoping to provide references for the research in this field.
  • 加载中
    1. [1]

      Hage D S. Anal. Chem., 1995, 67(12):R455-R462  doi: 10.1021/ac00108a030

    2. [2]

      Hagan A K, Zuchner T. Anal. Bioanal. Chem., 2011, 400(9):2847-2864  doi: 10.1007/s00216-011-5047-7

    3. [3]

      Jackson T M, Ekins R P. J. Immunol. Methods., 1986, 87(1):13-20  doi: 10.1016/0022-1759(86)90338-8

    4. [4]

      Liu R, Wu P, Yang L, Hou X, Lyu Y. Mass Spectrom. Rev., 2014, 33(5):373-393  doi: 10.1002/mas.v33.5

    5. [5]

      Yalow R S, Berson S A. Nature, 1959, 184(4699):1648-1649
       

    6. [6]

      Lequin R M. Clin. Chem., 2005, 51(12):2415-2418  doi: 10.1373/clinchem.2005.051532

    7. [7]

      Engvall E, Perlmann P. J. Immunoass. Immunoch., 1971, 8(9):871-875  doi: 10.1016/0019-2791(71)90454-X

    8. [8]

      Schroeder H R, Vogelhut P O, Carrico R J, Bogulaski R C, Buckler R T. Anal. Chem., 1976, 48(13):1933-1937  doi: 10.1021/ac50007a032

    9. [9]

      Zhao L, Sun L, Chu X. TrAC-Trends Anal. Chem., 2009, 28(4):404-415  doi: 10.1016/j.trac.2008.12.006

    10. [10]

      Soini E, Hemmila I. Clin. Chem., 1979, 25(3):353-361
       

    11. [11]

      Blackburn G F, Shah H P, Kenten J H, Leland J, Kamin R A, Link J, Peterman J, Powell M J, Shah A, Talley D B, Tyagi S K, Wilkins E, Wu T G, Massey R J. Clin. Chem., 1991, 37(9):1534-1539
       

    12. [12]

      Kenten J H, Casadei J, Link J, Lupold S, Willey J, Powell M, Rees A, Massey R. Clin. Chem., 1991, 37(9):1626-1632
       

    13. [13]

      Marquette C A, Hezard P, Degiuli A, Blum L J. Sens. Actuators B, 2006, 113(2):664-670  doi: 10.1016/j.snb.2005.07.015

    14. [14]

      Forster R J, Bertoncello P, Keyes T E. Annu. Rev. Anal. Chem., 2009, 2:359-385  doi: 10.1146/annurev-anchem-060908-155305

    15. [15]

      Han M Y, Gao X H, Su J Z, Nie S. Nat. Biotechnol., 2001, 19(7):631-635  doi: 10.1038/90228

    16. [16]

      Chattopadhyay P K, Price D A, Harper T F, Betts M R, Yu J, Gostick E, Perfetto S P, Goepfert P, Koup R A, de Rosa S C, Bruchez M P, Roederer M. Nat. Med., 2006, 12(8):972-977  doi: 10.1038/nm1371

    17. [17]

      Biju V, Itoh T, Ishikawa M. Chem. Soc. Rev., 2010, 39(8):3031-3056  doi: 10.1039/b926512k

    18. [18]

      Wu P, Miao L N, Wang H F, Shao X G, Yan X P. Angew. Chem. Int. Ed., 2011, 50(35):8118-8121  doi: 10.1002/anie.v50.35

    19. [19]

      Zhang C, Wu F B, Zhang Y Y, Wang X, Zhang X R. J. Anal. At. Spectrom., 2001, 16(12):1393-1396  doi: 10.1039/b106387c

    20. [20]

      Bings N H, Bogaerts A, Broekaert J A C. Anal. Chem., 2010, 82(12):4653-4681  doi: 10.1021/ac1010469

    21. [21]

      Zheng C, Yang L, Sturgeon R E, Hou X. Anal. Chem., 2010, 82(9):3899-3904  doi: 10.1021/ac1004376

    22. [22]

      Gao Y, Peng X, Shi Z, Zhang R, Xia X, Yue F, Liu R. At. Spectrosc., 2012, 33(3):73-77

    23. [23]

      Proefrock D, Prange A. Appl. Spectrosc., 2012, 66(8):843-868  doi: 10.1366/12-06681

    24. [24]

      Houk R S, Fassel V A, Flesch G D, Svec H J, Gray A L, Taylor C E. Anal. Chem., 1980, 52(14):2283-2289  doi: 10.1021/ac50064a012

    25. [25]

      Bettmer J, Montes Bayon M, Ruiz Encinar J, Fernandez Sanchez M L, del Rosario Fernandez de la Campa M, Sanz Medel A. J. Proteomics, 2009, 72(6):989-1005  doi: 10.1016/j.jprot.2009.05.003

    26. [26]

      Adams F C. J. Am. Soc. Mass. Spectrom., 2008, 19(11):R1-2  doi: 10.1016/j.jasms.2008.07.008

    27. [27]

      Rodriguez-Gonzalez P, Marchante-Gayon J M, Alonso J I G, Sanz-Medel A. Spectrochim. Acta B, 2005, 60(2):151-207  doi: 10.1016/j.sab.2005.01.005

    28. [28]

      PerkinElmer, Inc.2003.The 30-minute guide to ICP-MS. http://www.perkinelmer.com/CMSResources/Images/44-74849tch_icpmsthirtyminuteguide

    29. [29]

      Baranov V I, Quinn Z, Bandura D R, Tanner S D. Anal. Chem., 2002, 74(7):1629-1636  doi: 10.1021/ac0110350

    30. [30]

      Corthals G L, Wasinger V C, Hochstrasser D F, Sanchez J C. Electrophoresis, 2000, 21(6):1104-1115  doi: 10.1002/(ISSN)1522-2683

    31. [31]

      Liu R, Zhang S X, Wei C, Xing Z, Zhang S C, Zhang X R. Acc. Chem. Res., 2016, 49(5):775-783  doi: 10.1021/acs.accounts.5b00509

    32. [32]

      Zhang C, Wu F, Zhang X R. J. Anal. At. Spectrom., 2002, 17(10):1304-1307  doi: 10.1039/b205623b

    33. [33]

      Zhang C, Zhang Z Y, Yu BB, Shi J J, Zhang X R. Anal. Chem., 2002, 74(1):96-99  doi: 10.1021/ac0103468

    34. [34]

      Quinn Z A, Baranov V I, Tanner S D, Wrana J L. J. Anal. At. Spectrom., 2002, 17(8):892-896  doi: 10.1039/b202306g

    35. [35]

      Giesen C, Jakubowski N, Panne U, Weller M G. J. Anal. At. Spectrom., 2010, 25(10):1567-1572  doi: 10.1039/c0ja00009d

    36. [36]

      Li F, Zhao Q, Wang C, Lu X, Li X F, Le X C. Anal. Chem., 2010, 82(8):3399-3403  doi: 10.1021/ac100325f

    37. [37]

      Hu S, Liu R, Zhang S, Huang Z, Xing Z, Zhang X. J. Am. Soc. Mass. Spectrom., 2009, 20(6):1096-1103  doi: 10.1016/j.jasms.2009.02.005

    38. [38]

      Liu R, Xing Z, Lv Y, Zhang S, Zhang X. Talanta, 2010, 83(1):48-54  doi: 10.1016/j.talanta.2010.08.037

    39. [39]

      Liu R, Liu X, Tang Y, Wu L, Hou X, Lv Y. Anal. Chem., 2011, 83(6):2330-2336  doi: 10.1021/ac103265z

    40. [40]

      Liu R, Zhang Y, Zhang S, Qiu W, Gao Y. Appl. Spectrosc. Rev., 2013, 49(2):121-138
       

    41. [41]

      Bustos A R M, Trapiella-Alfonso L, Encinar J R, Costa-Fernandez J M, Pereiro R, Sanz-Medel A. Biosens. Bioelectron., 2012, 33(1):165-171  doi: 10.1016/j.bios.2011.12.046

    42. [42]

      Zhang S, Zhang C, Xing Z, Zhang X. Clin. Chem., 2004, 50(7):1214-1221  doi: 10.1373/clinchem.2003.029850

    43. [43]

      Hutchinson R W, Ma R L, McLeod C W, Milford-Ward A, Lee D. Can. J. Anal. Sci. Spectros., 2004, 49(6):429-435

    44. [44]

      Ornatsky O, Baranov V, Bandura D R, Tanner S D, Dick J. J. Immunol. Methods, 2006, 308(1-2):68-76  doi: 10.1016/j.jim.2005.09.020

    45. [45]

      Careri M, Elviri L, Mangia A, Mucchino C. Anal. Bioanal. Chem., 2007, 387(5):1851-1854  doi: 10.1007/s00216-006-1091-0

    46. [46]

      Careri M, Elviri L, Maffini M, Mangia A, Mucchino C, Terenghi M. Rapid Commun. Mass Spectrom., 2008, 22(6):807-811  doi: 10.1002/(ISSN)1097-0231

    47. [47]

      Ornatsky O I, Baranov V I, Bandura D R, Tanner S D, Dick J. Translational Oncogenomics, 2006, 1:1-9
       

    48. [48]

      Terenghi M, Elviri L, Careri M, Mangia A, Lobinski R. Anal. Chem., 2009, 81(22):9440-9448  doi: 10.1021/ac901853g

    49. [49]

      Yan X, Yang L, Wang Q. Angew. Chem. Int. Ed., 2011, 50(22):5130-5133  doi: 10.1002/anie.v50.22

    50. [50]

      Lou X, Zhang G, Herrera I, Kinach R, Ornatsky O, Baranov V, Nitz M, Winnik M A. Angew. Chem. Int. Ed., 2007, 46(32):6111-6114  doi: 10.1002/(ISSN)1521-3773

    51. [51]

      Bandura D R, Baranov V I, Ornatsky O I, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick J E, Tanner S D. Anal. Chem., 2009, 81(16):6813-6822  doi: 10.1021/ac901049w

    52. [52]

      Ornatsky O, Bandura D, Baranov V, Nitz M, Winnik M A, Tanner S. J. Immunol. Methods, 2010, 361(1-2):1-20  doi: 10.1016/j.jim.2010.07.002

    53. [53]

      Bendall S C, Simonds E F, Qiu P, Amir E D, Krutzik P O, Finck R, Bruggner R V, Melamed R, Trejo A, Ornatsky O I, Balderas R S, Plevritis S K, Sachs K, Pe'er D, Tanner S D, Nolan G P. Science, 2011, 332(6030):687-696  doi: 10.1126/science.1198704

    54. [54]

      Bodenmiller B, Zunder E R, Finck R, Chen T J, Savig E S, Bruggner R V, Simonds E F, Bendall S C, Sachs K, Krutzik P O, Nolan G P. Nat. Biotechnol., 2012, 30(9):858-867  doi: 10.1038/nbt.2317

    55. [55]

      Beveridge J S, Stephens J R, Williams M E. Annu. Rev. Anal. Chem., 2011, 4:251-273  doi: 10.1146/annurev-anchem-061010-114041

    56. [56]

      Chikkaveeraiah B V, Bhirde A A, Morgan N Y, Eden H S, Chen X. ACS Nano, 2012, 6(8):6546-6561  doi: 10.1021/nn3023969

    57. [57]

      Zhao Q, Lu X, Yuan C G, Li X F, Le X C. Anal. Chem., 2009, 81(17):7484-7489  doi: 10.1021/ac900961y

    58. [58]

      Cho H K, Lim H B. J. Anal. At. Spectrom., 2013, 28(4):468-472  doi: 10.1039/c3ja30299g

    59. [59]

      Chen B, Hu B, Jiang P, He M, Peng H, Zhang X. Analyst., 2011, 136(19):3934-3942  doi: 10.1039/c1an15387k

    60. [60]

      Peng H, Chen B, He M, Zhang Y, Hu B. J. Anal. At. Spectrom., 2011, 26(6):1217-1223  doi: 10.1039/c1ja00007a

    61. [61]

      Peng H, Jiao Y, Xiao X, Chen B, He M, Liu Z, Zhang X, Hu B. J. Anal. At. Spectrom., 2014, 29(6):1112-1119  doi: 10.1039/c4ja00003j

    62. [62]

      Konz T, Anon Alvarez E, Montes-Bayon M, Sanz-Medel A. Anal. Chem., 2013, 85(17):8334-8340  doi: 10.1021/ac401692k

    63. [63]

      Zhang Y, Chen B, He M, Yang B, Zhang J, Hu B. Anal. Chem., 2014, 86(16):8082-8089  doi: 10.1021/ac500964s

    64. [64]

      Zhang X, Chen B, He M, Wang H, Hu B. Biosens. Bioelectron., 2016, 86:736-740  doi: 10.1016/j.bios.2016.07.073

    65. [65]

      Yang B, Chen B, He M, Hu B. Anal. Chem., 2017, 89(3):1879-1886  doi: 10.1021/acs.analchem.6b04314

    66. [66]

      Han G, Zhang S, Xing Z, Zhang X. Angew. Chem. Int. Ed., 2013, 52(5):1466-1471  doi: 10.1002/anie.201206903

  • 加载中
    1. [1]

      Runze Xu Rui Liu . U-Pb Dating in the Age of Dinosaurs. University Chemistry, 2024, 39(9): 243-247. doi: 10.12461/PKU.DXHX202404083

    2. [2]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    3. [3]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    4. [4]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    5. [5]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    6. [6]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    7. [7]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    8. [8]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    9. [9]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    10. [10]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    11. [11]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    12. [12]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    13. [13]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    16. [16]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    17. [17]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    18. [18]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    19. [19]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    20. [20]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

Metrics
  • PDF Downloads(6)
  • Abstract views(683)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return