Citation: WANG Hong-Ya, YIN Bin-Cheng, YE Bang-Ce. Specific microRNA Detection Based on Surface Plasmon-Enhanced Energy Transfer Between Gold Nanoparticles and Silver Nanoclusters[J]. Chinese Journal of Analytical Chemistry, ;2017, 45(12): 2018-2025. doi: 10.11895/j.issn.0253-3820.171317 shu

Specific microRNA Detection Based on Surface Plasmon-Enhanced Energy Transfer Between Gold Nanoparticles and Silver Nanoclusters

  • Corresponding author: YE Bang-Ce, bcye@ecust.edu.cn
  • Received Date: 11 October 2017
    Accepted Date: 1 November 2017

    Fund Project: This work was supported by the National Natural Science Foundation of China (Nos. 21675052, 21335003, 21575089) and the Fundamental Research Funds for the Central Universities, Chinathe National Natural Science Foundation of China 21335003the National Natural Science Foundation of China 21675052the National Natural Science Foundation of China 21575089

Figures(6)

  • There is high demand for a sensitive method for miRNA detection in clinical diagnosis. In this work, we developed a method for miRNA detection based on the surface plasmon-enhanced energy transfer (SPEET) between gold nanoparticles (AuNPs) and silver nanoclusters (AgNCs), coupled with DNA polymerase and nicking enzyme-assisted isothermal amplification for target recycling. Two DNA probes (Probe a and Probe b) were assembled onto the surface of AuNPs to form Probe b-Probe a-AuNP conjugates. Probe a consisted three domains: the complementary sequence of miRNA, the specific site of the nicking enzyme, and the self-assembly sequence for AgNCs. The 3' end of Probe a was modified with thiol as a binding site for AuNPs. The SPEET of AgNCs and AuNPs was inhibited when miRNA was added to produce the dumbbell shaped template by polymerase. The template could promote synthesis of AgNCs, resulting in replacement and subsequently recycling of the target molecule for signal amplification. In comparison with the traditional method of miRNA detection with commercial RT-PCR kits, this method avoided the process of reverse transcription and was easy to perform. In addition, this method with a detection limit of 2.5×10-11 mol/L was cost-effective, label-free, and highly selective for detecting miRNA, and could be applied to the analysis of miRNA in biological samples.
  • 加载中
    1. [1]

      Rana T M. Nat. Rev. Mol. Cell Biol., 2007, 8(1):23-36  doi: 10.1038/nrm2085

    2. [2]

      Lee R C, Feinbaum R L, Ambros V. Cell, 1993, 75(5):843-854  doi: 10.1016/0092-8674(93)90529-Y

    3. [3]

      Griffiths-Jones S, Saini H K, Dongen S V, Enright A J. Nucleic Acids Res., 2008, 36(SI):D154-D158

    4. [4]

      Brennecke J, Hipfner D R, Stark A, Russell R B, Cohen S M. Cell, 2003, 113(1):25-36  doi: 10.1016/S0092-8674(03)00231-9

    5. [5]

      Wang Y, Keys D N, Auyoung J K, Chen C. J. Cell Physiol., 2009, 218(2):251-255  doi: 10.1002/jcp.v218:2

    6. [6]

      Dostie J, Mourelatos Z, Yang M, Sharma A, Dreyfuss G. RNA, 2003, 9(2):180-186  doi: 10.1261/rna.2141503

    7. [7]

      Xu P, Vernooy S Y, Guo M, Hay B A. Curr. Biol., 2003, 13(9):790-795  doi: 10.1016/S0960-9822(03)00250-1

    8. [8]

      Chen C Z, Li L, Lodish H F, Bartel D P. Science, 2004, 303(5654):83-86  doi: 10.1126/science.1091903

    9. [9]

      Calin G A, Dumitru C D, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K. Proc. Natl. Acad. Sci. USA, 2002, 99(24):15524-15529  doi: 10.1073/pnas.242606799

    10. [10]

      Michael M Z, O' Connor S M, van Holst Pellekaan N G, Young G P, James R J. Mol. Cancer Res., 2003, 1(12):882-891

    11. [11]

      Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A. Genes Chromosomes Cancer, 2004, 39(2):167-169  doi: 10.1002/(ISSN)1098-2264

    12. [12]

      Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y. Cancer Res., 2004, 64(11):3753-3756  doi: 10.1158/0008-5472.CAN-04-0637

    13. [13]

      Eis P S, Tam W, Sun L, Chadburn A, Li Z, Gomez M F, Lund E, Dahlberg J E. Proc. Natl. Acad. Sci.USA, 2005, 102(10):3627-3632  doi: 10.1073/pnas.0500613102

    14. [14]

      Chan J A, Krichevsky A M, Kosik K S. Cancer Res., 2005, 65(14):6029-6033  doi: 10.1158/0008-5472.CAN-05-0137

    15. [15]

      Kluiver J, Poppema S, De J D, Blokzijl T, Harms G, Jacobs S, Kroesen B J, Van den Berg A. J. Pathol., 2005, 207(2):243-249  doi: 10.1002/path.v207:2

    16. [16]

      Mitchell P S, Parkin R K, Kroh E M, Fritz B R, Wyman S K, Pogosova-Agadjanyan E L, Peterson A, Noteboom J, O'Briant K C, Allen A. Proc. Natl. Acad. Sci. USA, 2008, 105(30):10513-10518  doi: 10.1073/pnas.0804549105

    17. [17]

      Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z. Nucleic Acids Res., 2004, 32(22):e175  doi: 10.1093/nar/gnh171

    18. [18]

      Pena J T G, Cherin S L, Rouhanifard S H, Janos L, Markus H, Aleksandra M, Cindy L, Daniel H, Philipp B, Mihaela Z. Nat. Meth., 2009, 6(2):139-141  doi: 10.1038/nmeth.1294

    19. [19]

      Raymond C K, Roberts B S, Garrettengele P, Lim L P, Johnson J M. RNA, 2005, 11(11):1737-1744  doi: 10.1261/rna.2148705

    20. [20]

      Chen C, Ridzon D A, Broomer A J, Zhou Z, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R. Nucleic Acids Res., 2005, 33(20):e179  doi: 10.1093/nar/gni178

    21. [21]

      Jonstrup S P, Koch J, Kjems J. RNA, 2006, 12(9):1747-1752  doi: 10.1261/rna.110706

    22. [22]

      Chen A, Ma S, Zhuo Y, Chai Y, Yuan R. Anal. Chem., 2016, 88(6):3203-3210  doi: 10.1021/acs.analchem.5b04578

    23. [23]

      Jia H, Li Z, Liu C, Cheng Y. Angew. Chem. Int. Ed., 2010, 49(32):5498-5501  doi: 10.1002/anie.201001375

    24. [24]

      Yin B C, Liu Y Q, Ye B C. J. Am. Chem. Soc., 2012, 134(11):5064-5067  doi: 10.1021/ja300721s

    25. [25]

      Chen C W, Wang C H, Wei C M, Hsieh C Y, Chen Y T, Chen Y F, Lai C W, Liu C L, Hsieh C C, Chou P T. J. Phys. Chem. C, 2009, 114:799-802

    26. [26]

      Liu J M, Chen J T, Yan X P. Anal. Chem., 2013, 85:3238-3245  doi: 10.1021/ac303603f

    27. [27]

      Vetten M A, Tlotleng N, Tanner Rascher D, Skepu A, Keter F K, Boodhia K, Koekemoer L A, Andraos C, Tshikhudo R, Gulumian M. Part. Fibre Toxicol., 2013, 10:50  doi: 10.1186/1743-8977-10-50

    28. [28]

      Osborn L, Kunkel S, Nabel G J. Proc. Natl. Acad. Sci. USA, 1989, 86(7):2336-2340  doi: 10.1073/pnas.86.7.2336

    29. [29]

      Bi S, M. Chen X, Jia Q, Dong Y. Nanoscale, 2015, 7:3745-3753  doi: 10.1039/C4NR06603K

    30. [30]

      Zhao J J, Jin X, Vdovenko M, Zhang L L, Sakharov I Y, Zhao S L. Chem. Commun., 2015, 51:11092-11095  doi: 10.1039/C5CC04381F

    31. [31]

      Wang J, Yin B C, Ye B C. Biosens. Bioelectron., 2016, 80:366-372  doi: 10.1016/j.bios.2016.02.005

    32. [32]

      Wang J, Li R D, Yin B C, Ye B C. Analyst, 2015, 140:6306-6312  doi: 10.1039/C5AN01350J

    33. [33]

      Degliangeli F, Kshirsagar P, Brunetti V, Pompa P P, Fiammengo R. J. Am. Chem. Soc., 2014, 136 (6):2264-2267  doi: 10.1021/ja412152x

    34. [34]

      Xi Q, Zhou D M, Kan Y Y, Ge J, Wu Z K, Yu R Q, Jiang J H. Anal. Chem., 2014, 86:1361-1365  doi: 10.1021/ac403944c

    35. [35]

      Li R D, Yin B C, Ye B C. Biosens. Bioelectron., 2016, 86:1011-1016  doi: 10.1016/j.bios.2016.07.042

    36. [36]

      Li R D, Wang J, Yin B C, Ye B C. Biosens. Bioelectron., 2015, 77:995-1000

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    3. [3]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    4. [4]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    7. [7]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    8. [8]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    9. [9]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    10. [10]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    11. [11]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    14. [14]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    15. [15]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    16. [16]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    18. [18]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(5)
  • Abstract views(321)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return