Citation: LIU Hui, LIU Meng-Li, HOU Peng, HUANG Cheng-Zhi. Preparation of Element-doped Fluorescent Carbon Dots and Their Applications in Biological Imaging[J]. Chinese Journal of Analytical Chemistry, ;2017, 45(12): 1845-1856. doi: 10.11895/j.issn.0253-3820.171296 shu

Preparation of Element-doped Fluorescent Carbon Dots and Their Applications in Biological Imaging

  • Corresponding author: HUANG Cheng-Zhi, chengzhi@swu.edu.cn
  • Received Date: 6 October 2017
    Accepted Date: 31 October 2017

    Fund Project: This work was supported by the National Natural Science Foundation of China (Nos. 21535006, 21705132) and the Fundamental Research Funds for the Central Universities (No. XDJK2017C065)the National Natural Science Foundation of China 21705132the National Natural Science Foundation of China 21535006the Fundamental Research Funds for the Central Universities XDJK2017C065

Figures(10)

  • Carbon dots have drawn a lot of attentions for their potential usage in bioimaging on the basis of their good biocompatibility and excellent anti-photobleaching ability. However, the relative low fluorescence quantum yield and lockage of near infrared fluorescence emission restrict their applications in the fluorescence imaging analysis. With the improvement of fluorescent properties through different elements doping, more and more carbon dots are used in biological imaging. In this paper, the synthesis of element-doped carbon dots, the influence by different elements doping and the development of element-doped carbon dots in imaging analysis are summarized, and the future prospect are anticipated.
  • 加载中
    1. [1]

      Cayuela A, Soriano M L, Carrillo-Carrión C, Valcárcel M. Chem. Commun., 2016, 52(7):1311-1326  doi: 10.1039/C5CC07754K

    2. [2]

      Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126(40):12736-12737  doi: 10.1021/ja040082h

    3. [3]

      Cao L, Wang X, Meziani M J, Lu F S, Wang H F, Luo P G, Lin Y, Harruff B A, Veca L M, Murray D, Xie S Y, Sun Y P. J. Am. Chem. Soc., 2007, 129(37):11318-11319  doi: 10.1021/ja073527l

    4. [4]

      Yang S T, Cao L, Luo P G, Lu F S, Wang X, Wang H F, Meziani M J, Liu Y F, Qi G, Sun Y P. J. Am. Chem. Soc., 2009, 131(32):11308-11309  doi: 10.1021/ja904843x

    5. [5]

      Bao L, Zhang Z L, Tian Z Q, Zhang L, Liu C, Lin Y, Qi B, Pang D W. Adv. Mater., 2011, 23(48):5801-5806  doi: 10.1002/adma.v23.48

    6. [6]

      Lu J, Yang J X, Wang J Z, Lim A L, Wang S, Loh K P. ACS Nano, 2009, 3(8):2367-2375  doi: 10.1021/nn900546b

    7. [7]

      Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M, Liu C, Yang S. J. Mater. Chem., 2012, 22(15):7461-7467  doi: 10.1039/c2jm16835a

    8. [8]

      Qu Q, Zhu A W, Shao X L, Shi G Y, Tian Y. Chem. Commun., 2012, 48(44):5473-5475  doi: 10.1039/c2cc31000g

    9. [9]

      Bao L, Liu C, Zhang Z L, Pang D W. Adv. Mater., 2015, 27(10):1663-1667  doi: 10.1002/adma.201405070

    10. [10]

      Qi B P, Hu H, Bao L, Zhang Z L, Tang B, Peng Y, Wang B S, Pang D W. Nanoscale, 2015, 7(14):5969-5973  doi: 10.1039/C5NR00842E

    11. [11]

      Liu H P, Ye T, Mao C D. Angew. Chem. Int. Ed., 2007, 46(34):6473-6475  doi: 10.1002/(ISSN)1521-3773

    12. [12]

      Huang X, Zhang F, Zhu L, Choi K Y, Guo N, Guo J, Tackett K, Anilkumar P, Liu G, Quan Q, Choi H S, Niu G, Sun Y P, Lee S, Chen X. ACS Nano, 2013, 7(7):5684-5693  doi: 10.1021/nn401911k

    13. [13]

      Liu R, Wu D, Feng X, Mullen K. J. Am. Chem. Soc., 2011, 133(39):15221-15223  doi: 10.1021/ja204953k

    14. [14]

      Baker S N, Baker G A. Angew. Chem. Int. Ed., 2010, 49(38):6726-6744  doi: 10.1002/anie.200906623

    15. [15]

      Esteves da Silva J C G, Gonçalves H M R. TrAC-Trends Anal. Chem., 2011, 30(8):1327-1336  doi: 10.1016/j.trac.2011.04.009

    16. [16]

      Shen J, Zhu Y, Yang X, Li C. Chem. Commun., 2012, 48(31):3686-3699  doi: 10.1039/c2cc00110a

    17. [17]

      Lim S Y, Shen W, Gao Z Q. Chem. Soc. Rev., 2015, 44(1):362-381  doi: 10.1039/C4CS00269E

    18. [18]

      Zhao A, Chen Z, Zhao C, Gao N, Ren J, Qu X. Carbon, 2015, 85:309-327  doi: 10.1016/j.carbon.2014.12.045

    19. [19]

      Zheng X T, Ananthanarayanan A, Luo K Q, Chen P. Small, 2015, 11(14):1620-1636  doi: 10.1002/smll.v11.14

    20. [20]

      Mhetaer Tuerhong, XU Yang, YIN Xue-Bo. Chinese J. Anal. Chem., 2017, 45(1):139-150  doi: 10.11895/j.issn.0253-3820.160295
       

    21. [21]

      Xue M, Zou M, Zhao J, Zhan Z, Zhao S. J. Mater. Chem. B, 2015, 3(33):6783-6789  doi: 10.1039/C5TB01073J

    22. [22]

      Wang Q, Liu X, Zhang L C, Lv Y. Analyst, 2012, 137(22):5392-5397  doi: 10.1039/c2an36059d

    23. [23]

      Park Y, Yoo J, Lim B, Kwon W, Rhee S W. J. Mater. Chem. A, 2016, 4(30):11582-11603  doi: 10.1039/C6TA04813G

    24. [24]

      Du Y, Guo S. Nanoscale, 2016, 8(5):2532-2543  doi: 10.1039/C5NR07579C

    25. [25]

      Li S, Li Y, Cao J, Zhu J, Fan L, Li X. Anal. Chem., 2014, 86(20):10201-10207  doi: 10.1021/ac503183y

    26. [26]

      Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L. J. Am. Chem. Soc., 2012, 134(1):15-18  doi: 10.1021/ja206030c

    27. [27]

      Zhao J, Tang L, Xiang J, Ji R, Hu Y, Yuan J, Zhao J, Tai Y, Cai Y. RSC Adv., 2015, 5(37):29222-29229  doi: 10.1039/C5RA02358K

    28. [28]

      Gao M X, Liu C F, Wu Z L, Zeng Q L, Yang X X, Wu W B, Li Y F, Huang C Z. Chem. Commun., 2013, 49(73):8015-8017  doi: 10.1039/c3cc44624g

    29. [29]

      Ju J, Chen W. Biosens. Bioelectron., 2014, 58:219-225  doi: 10.1016/j.bios.2014.02.061

    30. [30]

      Tan D, Liu X, Qiu J. RSC Adv., 2015, 5(102):84276-84279  doi: 10.1039/C5RA19216A

    31. [31]

      Bera K, Sau A, Mondal P, Mukherjee R, Mookherjee D, Metya A, Kundu A K, Mandal D, Satpati B, Chakrabarti O, Basu S. Chem. Mater., 2016, 28(20):7404-7413  doi: 10.1021/acs.chemmater.6b03008

    32. [32]

      Krysmann M J, Kelarakis A, Dallas P, Giannelis E P. J. Am. Chem. Soc., 2012, 134(2):747-750  doi: 10.1021/ja204661r

    33. [33]

      Zhou W, Dong S, Lin Y, Lu C. Chem. Commun., 2017, 53(13):2122-2125  doi: 10.1039/C7CC00169J

    34. [34]

      Zhang Y, Li C, Fan Y, Wang C, Yang R, Liu X, Zhou L. Nanoscale, 2016, 8(47):19744-19753  doi: 10.1039/C6NR06553H

    35. [35]

      Xu X, Zhang K, Zhao L, Li C, Bu W, Shen Y, Gu Z, Chang B, Zheng C, Lin C, Sun H, Yang B. ACS Appl. Mater. Interfaces, 2016, 8(48):32706-32716  doi: 10.1021/acsami.6b12252

    36. [36]

      Huang H, Li C, Zhu S, Wang H, Chen C, Wang Z, Bai T, Shi Z, Feng S. Langmuir, 2014, 30(45):13542-13548  doi: 10.1021/la503969z

    37. [37]

      Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, Liu W. Chem. Commun., 2012, 48(64):7955-7957  doi: 10.1039/c2cc33869f

    38. [38]

      Wang J, Li R S, Zhang H Z, Wang N, Zhang Z, Huang C Z. Biosens. Bioelectron., 2017, 97:157-163  doi: 10.1016/j.bios.2017.05.035

    39. [39]

      Tang Y, Su Y, Yang N, Zhang L, Lv Y. Anal. Chem., 2014, 86(9):4528-4535  doi: 10.1021/ac5005162

    40. [40]

      Li X, Lau S P, Tang L, Ji R, Yang P. J. Mater. Chem. C, 2013, 1(44):7308-7313  doi: 10.1039/c3tc31473a

    41. [41]

      Wang W, Damm C, Walter J, Nacken T J, Peukert W. Phys. Chem. Chem. Phys., 2016, 18(1):466-475  doi: 10.1039/C5CP04942C

    42. [42]

      Shangguan J F, He D G, He X X, Wang K M, Xu F Z, Liu J Q, Tang J L, Yang X, Huang J. Anal. Chem., 2016, 88(15):7837-7843  doi: 10.1021/acs.analchem.6b01932

    43. [43]

      Xu J, Zhou Y, Cheng G, Dong M, Liu S, Huang C. Luminescence, 2015, 30(4):411-415  doi: 10.1002/bio.v30.4

    44. [44]

      Tong G, Wang J, Wang R, Guo X, He L, Qiu F, Wang G, Zhu B, Zhu X, Liu T. J. Mater. Chem. B, 2015, 3(4):700-706  doi: 10.1039/C4TB01643B

    45. [45]

      Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C, Lin H. Angew. Chem. Int. Ed., 2015, 54(18):5360-5363  doi: 10.1002/anie.201501193

    46. [46]

      Zhu X, Zuo X, Hu R, Xiao X, Liang Y, Nan J. Mater. Chem. Phys., 2014, 147(3):963-967  doi: 10.1016/j.matchemphys.2014.06.043

    47. [47]

      Yang Z, Xu M, Liu Y, He F, Gao F, Su Y, Wei H, Zhang Y. Nanoscale, 2014, 6(3):1890-1895  doi: 10.1039/C3NR05380F

    48. [48]

      Li X, Zhang S, Kulinich S A, Liu Y, Zeng H. Sci. Rep., 2014, 4:4976
       

    49. [49]

      Hu L M, Sun Y, Li S L, Wang X L, Hu K L, Wang L R, Liang X J, Wu Y. Carbon, 2014, 67:508-513  doi: 10.1016/j.carbon.2013.10.023

    50. [50]

      Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B. Angew. Chem. Int. Ed., 2013, 52(14):3953-3957  doi: 10.1002/anie.v52.14

    51. [51]

      Liang Q, Ma W, Shi Y, Li Z, Yang X. Carbon, 2013, 60:421-428  doi: 10.1016/j.carbon.2013.04.055

    52. [52]

      Zhu C Z, Zhai J F, Dong S J. Chem. Commun., 2012, 48(75):9367-9369  doi: 10.1039/c2cc33844k

    53. [53]

      Zhang Y Q, Ma D K, Zhuang Y, Zhang X, Chen W, Hong L L, Yan Q X, Yu K, Huang S M. J. Mater. Chem., 2012, 22(33):16714-16718  doi: 10.1039/c2jm32973e

    54. [54]

      Zhu W, Song H, Zhang L, Weng Y, Su Y, Lv Y. RSC Adv., 2015, 5(74):60085-60089  doi: 10.1039/C5RA08336B

    55. [55]

      Hsu P C, Chang H T. Chem. Commun., 2012, 48(33):3984-3986  doi: 10.1039/c2cc30188a

    56. [56]

      Moon B J, Oh Y, Shin D H, Kim S J, Lee S H, Kim T W, Park M, Bae S. Chem. Mater., 2016, 28(5):1481-1488  doi: 10.1021/acs.chemmater.5b04915

    57. [57]

      Fang Y X, Guo S J, Li D, Zhu C Z, Ren W, Dong S J, Wang E K. ACS Nano, 2012, 6(1):400-409  doi: 10.1021/nn2046373

    58. [58]

      Wei X M, Xu Y, Li Y H, Yin X B, He X W. RSC Adv., 2014, 4(84):44504-44508  doi: 10.1039/C4RA08523J

    59. [59]

      Kang Y F, Fang Y W, Li Y H, Li W, Yin X B. Chem. Commun., 2015, 51(95):16956-16959  doi: 10.1039/C5CC06304C

    60. [60]

      Chen B B, Liu Z X, Deng W C, Zhan L, Liu M L, Huang C Z. Green Chem., 2016, 18(19):5127-5132  doi: 10.1039/C6GC01820C

    61. [61]

      Tang L, Ji R, Li X, Teng K S, Lau S P. J. Mater. Chem. C, 2013, 1(32):4908-4915  doi: 10.1039/c3tc30877d

    62. [62]

      Liu M L, Yang L, Li R S, Chen B B, Liu H, Huang C Z. Green Chem., 2017, 19(15):3611-3617  doi: 10.1039/C7GC01236E

    63. [63]

      Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, Al-Youbi A O, Sun X P. Adv. Mater., 2012, 24(15):2037-2041  doi: 10.1002/adma.201200164

    64. [64]

      Wu Z L, Zhang P, Gao M X, Liu C F, Wang W, Leng F, Huang C Z. J. Mater. Chem. B, 2013, 1(22):2868-2873  doi: 10.1039/c3tb20418a

    65. [65]

      HU Yue-Fang, ZHANG Liang-Liang, LIN Li-Yun, LI Xue-Feng, ZHAO Shu-Lin, LIANG Hong. Sci. Sin. Chim., 2017, 47(2):258-266
       

    66. [66]

      Hu Y, Zhang L, Li X, Liu R, Lin L, Zhao S. ACS Sustainable Chem. Eng., 2017, 5(6):4992-5000  doi: 10.1021/acssuschemeng.7b00393

    67. [67]

      Yuan Y H, Liu Z X, Li R, Zou H Y, Lin M, Liu H, Huang C Z. Nanoscale, 2016, 8(12):6770-6776  doi: 10.1039/C6NR00402D

    68. [68]

      Ding H, Yu S B, Wei J S, Xiong H M. ACS Nano, 2016, 10(1):484-491  doi: 10.1021/acsnano.5b05406

    69. [69]

      Qu S, Zhou D, Li D, Ji W, Jing P, Han D, Liu L, Zeng H, Shen D. Adv. Mater., 2016, 28(18):3516-3521  doi: 10.1002/adma.201504891

    70. [70]

      Lu S, Sui L, Liu J, Zhu S, Chen A, Jin M, Yang B. Adv. Mater., 2017, 29(15):1603443  doi: 10.1002/adma.201603443

    71. [71]

      Wang Q, Zhang S, Zhong Y, Yang X F, Li Z, Li H. Anal. Chem., 2017, 89(3):1734-1741  doi: 10.1021/acs.analchem.6b03983

    72. [72]

      Singh S, Mishra A, Kumari R, Sinha K K, Singh M K, Das P. Carbon, 2017, 114:169-176  doi: 10.1016/j.carbon.2016.12.020

    73. [73]

      Song Z, Quan F, Xu Y, Liu M, Cui L, Liu J. Carbon, 2016, 104:169-178  doi: 10.1016/j.carbon.2016.04.003

    74. [74]

      Lin M, Zou H Y, Yang T, Liu Z X, Liu H, Huang C Z. Nanoscale, 2016, 8(5):2999-3007  doi: 10.1039/C5NR08177G

    75. [75]

      Li H, Sun C, Vijayaraghavan R, Zhou F, Zhang X, MacFarlane D R. Carbon, 2016, 104:33-39  doi: 10.1016/j.carbon.2016.03.040

    76. [76]

      Jeon S J, Kang T W, Ju J M, Kim M J, Park J H, Raza F, Han J, Lee H R, Kim J H. Adv. Funct. Mater., 2016, 26(45):8211-8219  doi: 10.1002/adfm.201603803

    77. [77]

      Guo L, Ge J, Liu W, Niu G, Jia Q, Wang H, Wang P. Nanoscale, 2016, 8(2):729-734  doi: 10.1039/C5NR07153D

    78. [78]

      Gong Y, Yu B, Yang W, Zhang X. Biosens. Bioelectron., 2016, 79:822-828  doi: 10.1016/j.bios.2016.01.022

    79. [79]

      Zhang B X, Gao H, Li X L. New J. Chem., 2014, 38:4615-4621  doi: 10.1039/C4NJ00965G

    80. [80]

      Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, Tan H, Zhao Z, Xie Z, Sun Z. Nanoscale, 2013, 5(24):12272-12277  doi: 10.1039/c3nr04402e

    81. [81]

      Dong Y Q, Pang H C, Yang H B, Guo C X, Shao J W, Chi Y W, Li C M, Yu T. Angew. Chem. Int. Ed., 2013, 52(30):7800-7804  doi: 10.1002/anie.v52.30

    82. [82]

      Chandra S, Patra P, Pathan S H, Roy S, Mitra S, Layek A, Bhar R, Pramanik P, Goswami A. J. Mater. Chem. B, 2013, 1(18):2375-2382  doi: 10.1039/c3tb00583f

    83. [83]

      Ge J, Jia Q, Liu W, Guo L, Liu Q, Lan M, Zhang H, Meng X, Wang P. Adv. Mater., 2015, 27(28):4169-4177  doi: 10.1002/adma.v27.28

    84. [84]

      Zhang F, Feng X, Zhang Y, Yan L, Yang Y, Liu X. Nanoscale, 2016, 8(16):8618-8632  doi: 10.1039/C5NR08838K

    85. [85]

      Jiang Y, Wang Z, Dai Z. ACS Appl. Mater. Interfaces, 2016, 8(6):3644-3650  doi: 10.1021/acsami.5b08089

    86. [86]

      Choi Y, Kang B, Lee J, Kim S, Kim G T, Kang H, Lee B R, Kim H, Shim S H, Lee G, Kwon O H, Kim B S. Chem. Mater., 2016, 28(19):6840-6847  doi: 10.1021/acs.chemmater.6b01710

    87. [87]

      Han Y, Tang D, Yang Y, Li C, Kong W, Huang H, Liu Y, Kang Z. Nanoscale, 2015, 7(14):5955-5962  doi: 10.1039/C4NR07116F

    88. [88]

      Bourlinos A B, Trivizas G, Karakassides M A, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, Papagiannouli I, Aloukos P, Couris S. Carbon, 2015, 83:173-179  doi: 10.1016/j.carbon.2014.11.032

    89. [89]

      Zhang L, Zhang Z Y, Liang R P, Li Y H, Qiu J D. Anal. Chem., 2014, 86(9):4423-4430  doi: 10.1021/ac500289c

    90. [90]

      Shen P, Xia Y. Anal. Chem., 2014, 86(11):5323-5329  doi: 10.1021/ac5001338

    91. [91]

      Shan X, Chai L, Ma J, Qian Z, Chen J, Feng H. Analyst, 2014, 139(10):2322-2325  doi: 10.1039/C3AN02222F

    92. [92]

      Qian Z, Shan X, Chai L, Ma J, Chen J, Feng H. ACS Appl. Mater. Interfaces, 2014, 6(9):6797-6805  doi: 10.1021/am500403n

    93. [93]

      Fei H, Ye R, Ye G, Gong Y, Peng Z, Fan X, Samuel E L G, Ajayan P M, Tour J M. ACS Nano, 2014, 8(10):10837-10843  doi: 10.1021/nn504637y

    94. [94]

      Fan Z, Li Y, Li X, Fan L, Zhou S, Fang D, Yang S. Carbon, 2014, 70:149-156  doi: 10.1016/j.carbon.2013.12.085

    95. [95]

      Dey S, Govindaraj A, Biswas K, Rao C N R. Chem. Phys. Lett., 2014, 595-596:203-208  doi: 10.1016/j.cplett.2014.02.012

    96. [96]

      Jahan S, Mansoor F, Naz S, Lei J, Kanwal S. Anal. Chem., 2013, 85(21):10232-10239  doi: 10.1021/ac401949k

    97. [97]

      Chen P C, Chen Y N, Hsu P C, Shih C C, Chang H T. Chem. Commun., 2013, 49(16):1639-1641  doi: 10.1039/c3cc38486a

    98. [98]

      Wang F, Xie Z, Zhang H, Liu C Y, Zhang Y G. Adv. Funct. Mater., 2011, 21(6):1027-1031  doi: 10.1002/adfm.201002279

    99. [99]

      Shi B, Su Y, Zhang L, Huang M, Liu R, Zhao S. ACS Appl. Mater. Interfaces, 2016, 8(17):10717-10725  doi: 10.1021/acsami.6b01325

    100. [100]

      Hu S, Chang Q, Lin K, Yang J. Carbon, 2016, 105:484-489  doi: 10.1016/j.carbon.2016.04.078

    101. [101]

      Wu W, Zhan L, Fan W, Song J, Li X, Li Z, Wang R, Zhang J, Zheng J, Wu M, Zeng H. Angew. Chem. Int. Ed., 2015, 54(22):6540-6654  doi: 10.1002/anie.201501912

    102. [102]

      Liu Z X, Chen B B, Liu M L, Zou H Y, Huang C Z. Green Chem., 2017, 19(6):1494-1498  doi: 10.1039/C6GC03288E

    103. [103]

      Liu X, Jiang H, Ye J, Zhao C, Gao S, Wu C, Li C, Li J, Wang X. Adv. Funct. Mater., 2016, 26(47):8694-8706  doi: 10.1002/adfm.v26.47

    104. [104]

      Bourlinos A B, Bakandritsos A, Kouloumpis A, Gournis D, Krysmann M, Giannelis E P, Polakova K, Safarova K, Hola K, Zboril R. J. Mater. Chem., 2012, 22(44):23327-23330  doi: 10.1039/c2jm35592b

    105. [105]

      Xu Y, Jia X H, Yin X B, He X W, Zhang Y K. Anal. Chem., 2014, 86(24):12122-12129  doi: 10.1021/ac503002c

    106. [106]

      Du F, Zhang L, Zhang L, Zhang M, Gong A, Tan Y, Miao J, Gong Y, Sun M, Ju H, Wu C, Zou S. Biomaterials, 2017, 121:109-120  doi: 10.1016/j.biomaterials.2016.07.008

    107. [107]

      Li F, Liu C, Yang J, Wang Z, Liu W, Tian F. RSC Adv., 2014, 4(7):3201-3205  doi: 10.1039/C3RA43826K

    108. [108]

      Yuan Y H, Li R, Wang Q, Wu Z l, Wang J, Liu H, Huang C Z. Nanoscale, 2015, 7(40):16841-16847  doi: 10.1039/C5NR05326A

    109. [109]

      Xu Q, Liu Y, Su R, Cai L, Li B, Zhang Y, Zhang L, Wang Y, Wang Y, Li N, Gong X, Gu Z, Chen Y, Tan Y, Dong C, Sreeprasad T S. Nanoscale, 2016, 8(41):17919-17927  doi: 10.1039/C6NR05434J

    110. [110]

      Chen B B, Liu Z X, Zou H Y, Huang C Z. Analyst, 2016, 141(9):2676-2681  doi: 10.1039/C5AN02569A

    111. [111]

      Liu M L, Chen B B, Yang T, Wang J, Liu X D, Huang C Z. Methods Appl. Fluores., 2017, 5(1):015003  doi: 10.1088/2050-6120/aa5e2b

    112. [112]

      Song Y, Zhu S, Yang B. RSC Adv., 2014, 4(52):27184  doi: 10.1039/c3ra47994c

    113. [113]

      Yao J, Yang M, Duan Y X. Chem. Rev., 2014, 114(12):6130-6178  doi: 10.1021/cr200359p

    114. [114]

      Li G, Fu H, Chen X, Gong P, Chen G, Xia L, Wang H, You J, Wu Y. Anal. Chem., 2016, 88(5):2720-2726  doi: 10.1021/acs.analchem.5b04193

    115. [115]

      Feng J, Wang W J, Hai X, Yu Y L, Wang J H. J. Mater. Chem. B, 2016, 4(3):387-393  doi: 10.1039/C5TB01999K

    116. [116]

      Jin X Z, Sun X B, Chen G, Ding L X, Li Y H, Liu Z K, Wang Z J, Pan W, Hu C H, Wang J P. Carbon, 2015, 81:388-395  doi: 10.1016/j.carbon.2014.09.071

    117. [117]

      Vedamalai M, Periasamy A P, Wang C W, Tseng Y T, Ho L C, Shih C C, Chang H T. Nanoscale, 2014, 6(21):13119-13125  doi: 10.1039/C4NR03213F

    118. [118]

      Xu Y, Wu M, Yang Liu, Xi-Zeng Feng, Xue-Bo Yin, Xi-Wen He, Zhang Y K. Chem. Eur. J., 2013, 19(7):2276-2283  doi: 10.1002/chem.v19.7

    119. [119]

      Choi Y, Kim S, Choi M H, Ryoo S-R, Park J, Min D H, Kim B S. Adv. Funct. Mater., 2014, 24(37):5781-5789  doi: 10.1002/adfm.201400961

    120. [120]

      Sun S, Zhang L, Jiang K, Wu A, Lin H. Chem. Mater., 2016, 28(23):8659-8668  doi: 10.1021/acs.chemmater.6b03695

    121. [121]

      Li R S, Gao P F, Zhang H Z, Zheng L L, Li C M, Wang J, Li Y F, Liu F, Li N, Huang C Z. Chem. Sci., 2017, (10):6829-6835

    122. [122]

      Zheng M, Liu S, Li J, Qu D, Zhao H, Guan X, Hu X, Xie Z, Jing X, Sun Z. Adv. Mater., 2014, 26(21):3554-3560  doi: 10.1002/adma.v26.21

    123. [123]

      Tao H, Yang K, Ma Z, Wan J, Zhang Y, Kang Z, Liu Z. Small, 2012, 8(2):281-290  doi: 10.1002/smll.201101706

    124. [124]

      Tang J, Kong B, Wu H, Xu M, Wang Y, Wang Y, Zhao D, Zheng G. Adv. Mater., 2013, 25(45):6569-6574  doi: 10.1002/adma.201303124

    125. [125]

      Wang J, Zhang P, Huang C, Liu G, Leung K C F, Wáng Y X J. Langmuir, 2015, 31(29):8063-8073  doi: 10.1021/acs.langmuir.5b01875

    126. [126]

      Zheng M, Ruan S, Liu S, Sun T, Qu D, Zhao H, Xie Z, Gao H, Jing X, Sun Z. ACS Nano, 2015, 9(11):11455-11461  doi: 10.1021/acsnano.5b05575

    127. [127]

      Feng T, Ai X, An G, Yang P, Zhao Y. ACS Nano, 2016, 10(4):4410-4420  doi: 10.1021/acsnano.6b00043

    128. [128]

      Wei W, Xu C, Wu L, Wang J, Ren J, Qu X. Sci. Rep., 2014, 4:3564
       

    129. [129]

      Gao M X, Yang L, Zheng Y, Yang X X, Zou H Y, Han J, Liu Z X, Li Y F, Huang C Z. Chem. Eur. J., 2017, 23(9):2171-2178  doi: 10.1002/chem.201604963

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    3. [3]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    4. [4]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    5. [5]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    6. [6]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    10. [10]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    11. [11]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    12. [12]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    13. [13]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    14. [14]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    17. [17]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    18. [18]

      Siyao Zhan Yajiao Wang Zhihuan Cai Ayizhada Maimaitiyumier Tilan Duan Xiangfeng Wei Qi Wang Jiehua Liu Xianghua Kong . Exploration of the Chemical Elements across Time and Space. University Chemistry, 2024, 39(9): 5-10. doi: 10.12461/PKU.DXHX202403071

    19. [19]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    20. [20]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

Metrics
  • PDF Downloads(24)
  • Abstract views(1782)
  • HTML views(364)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return