Citation: LI Gang, LI Da-Wei, ZHAO Qing-Hua, JIAN Ao-Qun, WANG Kai-Ying, HU Jie, SANG Sheng-Bo, CHENG Zai-Jun, . Fabrication of 3D SU-8 Photoresist Microarrays via Inclined Uitraviolet Lithography[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(4): 660-664. doi: 10.11895/j.issn.0253-3820.150967 shu

Fabrication of 3D SU-8 Photoresist Microarrays via Inclined Uitraviolet Lithography

  • Corresponding author: SANG Sheng-Bo, 
  • Received Date: 7 December 2015
    Available Online: 5 March 2016

    Fund Project: 本文系国家自然科学基金(Nos.61504113,51205275) (Nos.61504113,51205275)人社部留学基金(No.[2014]240)山西省归国留学基金(2013-035) (No.[2014]240)山西省归国留学基金(2013-035)山西省人社厅留学人员择优资助(No.[2013]251)山西省科技研究基金(Nos.20141001021-2,2014011019-1) (No.[2013]251)山西省科技研究基金(Nos.20141001021-2,2014011019-1)国家863计划(No.2013AA041100) (No.2013AA041100)山西省科技重大专项(No.20121101004) (No.20121101004)山西省高等特色学科建设项目([2012]45)资助 ([2012]45)

  • To increase the specific surface area of three-dimensional(3D) microarrays, we proposed a novel method using the inclined UV lithography of the negative thick SU-8 photoresist instead of the traditional lithography. Firstly, we studied the effects of the array arrangement on the surface area of the SU-8 photoresist-based microarrays with MATLAB simulation, and determined the best parameters of the width of single micro-column and the space of the microarrays. During the fabrication processes, photoresist spinning was firstly performed twice to deposit a thick SU-8 photoresist layer on 2-inch silicon substrate, while the rotational speed and time were respectively set to 1500 r/min and 35 s. Then, the samples were respectively placed on a baking plate for 20 min at 65℃ and 70 min at 95℃ for pre-baking. The next step was the inclined UV lithography from both sides, in which the width of micro pillars was 20μm, the space between the pillars was 30μm and the lithography angle was 20°. Finally, we successfully fabricated the stable "X" type microarray with high specific surface after the high-low temperature post exposure baking and 30 min developing.
  • 加载中
    1. [1]

      1 Simon P,Gogotsi Y. Nat. Mater., 2008, 7(11):845-854

    2. [2]

      2 Pech D, Brunet M. J. Power Sources, 2010, 195(4):1266-1269

    3. [3]

      3 XU Rui-Xia, CHEN Zi-Kai, ZHAO Ming-Jie, NING Hong-Long, ZOU Jian-Hua, TAO Hong, WANG Lei, XU Miao. Chinese Journal of Luminescence, 2015, 36(8):935-940 徐瑞霞, 陈子楷, 赵铭杰, 宁洪龙, 邹建华, 陶 洪, 王 磊, 徐 苗. 发光学报, 2015, 36(8):935-940

    4. [4]

      4 Wu D, Xu J, Niu L G, Wu S Z, Midorikawa K, Sugioka K. Light-Sci. Appl., 2015, 4(1):228-236

    5. [5]

      5 Llobera A, Juvert J, González-Fernández A, Ibarlucea B, Carregal-Romero E, Büttgenbach S, Fernández-Sánchez C. Light-Sci. Appl., 2015, 4(4):271-278

    6. [6]

      6 Wang C L. J. Micro-electromech. Sys., 2005, 14(2):348-358

    7. [7]

      7 Kim D J, Trung T Q, Dang V Q, Kim B Y, Moon H K, Lee N E. Adv. Funct. Mater., 2015, 25(6):883-890

    8. [8]

      8 Al-ShehriS, Palitsin V, Webb R P, Grime G W. Nuclear Instruments and Methods in Physics Research B, 2015, 348:223-229

    9. [9]

      9 Amato L, Keller S S, Heiskanen A, Dimaki M, Emnéus J, Boisen A, Tenje M. Microelectron. Engineer., 2012, 98:483-487

    10. [10]

      10 Liu S J, Roeder G, aygun G, Mozek K, Evanschitzky P, Erdmann A, OPTIK, 2012, 123(10):928-931

    11. [11]

      11 Wang S, Hsia B, Carraro C, Maboudian R. J. Mater. Chem. A, 2014, 2:7997-8002

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    3. [3]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    4. [4]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    5. [5]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    6. [6]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    7. [7]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    8. [8]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    9. [9]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    10. [10]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    11. [11]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    12. [12]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    13. [13]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    16. [16]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    17. [17]

      Hao Zhao Zhen Gao Weihong Li . Practice and Exploration of the Construction of Experimental Technician Teams of Universities in the New Period. University Chemistry, 2024, 39(4): 7-12. doi: 10.3866/PKU.DXHX202310122

    18. [18]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    19. [19]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    20. [20]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

Metrics
  • PDF Downloads(1)
  • Abstract views(779)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return