Citation: YANG Shan-Shan, YANG Ya-Nan, LI Xue-Lin, ZHANG Yan. Determination of Biogenic Amines in Cheese by On-line Solid Phase Extraction Coupled with Capillary High Performance Liquid Chromatography[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 396-402. doi: 10.11895/j.issn.0253-3820.150811 shu

Determination of Biogenic Amines in Cheese by On-line Solid Phase Extraction Coupled with Capillary High Performance Liquid Chromatography

  • Corresponding author: ZHANG Yan, 
  • Received Date: 15 October 2015
    Available Online: 23 November 2015

    Fund Project: 本文系国家高技术研究发展计划基金资助项目(863计划,No.2011AA100807) (863计划,No.2011AA100807)

  • An on-line solid phase extraction coupled with capillary HPLC method was established for the simultaneous determination of fifteen kinds of biologic amines in cheese. The biogenic amines were concentrated on the solid phase extraction column, and transferred by the six-way valve to analytical column for separation and detection. Separation conditions on capillary HPLC, composition of on-line SPE mobile phase, pH of the sample solution and switching time of six-way switching valve were investigated to get better separation conditions of 15 biogenic amines. Optimum on-line SPE conditions including 5% of the acetonitrile-water as mobile phase for SPE column, pH=11 of the sample solution and 3 min of valve switching time were employed in the analytical method. The linear range of standard curve for fifteen biogenic amines was 0.25-50.0 mg/L; LOD were within the range of 0.05-0.25 mg/L. At spiked levels of 1, 20, 40 mg/kg, the recoveries of fifteen biogenic amines on four kinds of cheese ranged from 79.6% to 118.7% except methylamine, ethylamine, 3-methylbutanamine and 5-hydroxytryptamine; with RSDs from 0.3% to 14.9% except 3-methylbutanamine and 5-hydroxy-tryptamine. The method is accurate and reliable, and can be used to detect biogenic amines in cheese.
  • 加载中
    1. [1]

      1 Teti D, Visalli M, McNair H. J. Chromatogr. B, 2002, 781(1-2): 107-149

    2. [2]

      2 Wei F, Xu X L, Zhou G H, Zhao G M, Li C B, Zhang Y J, Chen L Z, Qi J. Meat. Sci., 2009, 81(3): 451-455

    3. [3]

      3 Önal A, Tekkeli S F K, Önal C. Food Chem., 2013, 138(1): 509-515

    4. [4]

      4 MA Ling, LIU Hui-Ping. Journal of Dairy Science and Technology, 2007, 123 (2): 55-58马 玲, 刘会平. 乳业科学与技术, 2007, 123 (2): 55-58

    5. [5]

      5 Loret S, Deloyer P, Dandrifosse G. Food Chem, 2005, 89(4): 519-525

    6. [6]

      6 Vinci G, Antonelli M L. Food Control, 2002, 13(8): 519-524

    7. [7]

      7 Marcoba A, Polo M C, Martin-Alvarez P J, Moreno-Arribas M V. Food Res Int, 2005, 38(4): 387-394

    8. [8]

      8 Hungerford J, Wu W H. Food Control, 2012, 25(2): 448-457

    9. [9]

      9 Muscarella M, Lo Magro S, Campaniello M, Armentano A, Stacchini P. Food Control, 2013, 31(1): 211-217

    10. [10]

      10 Dadáková E, Krízek M, Pelikánová T. Food Chem., 2009, 116(1): 365-370

    11. [11]

      11 Preti R, Antonelli M L, Bernacchia R, Vinci G. Food Chem., 2015, 187(15): 555-562

    12. [12]

      12 Ramos R M, Valente I M, Rodrigues J A. Talanta, 2014, 124(2): 146-151

    13. [13]

      13 SUN Yan-Ni, ZHANG Ning, WANG Cui-Ling, LIU Zhu-Lan, WANG Zheng, LIU Jian-Li. Chinese J. Anal. Chem., 2014, 42(2): 273-277孙艳妮, 张 宁, 王翠玲, 刘竹兰, 王 征, 刘建利. 分析化学, 2014, 42(2): 273-277

    14. [14]

      14 García-Villar N, Hernández-Cassou S, Saurina J. J. Chromatogr. A, 2009, 1216 (36): 6387-6393

    15. [15]

      15 Jia S, Kang Y P, Park J H, Lee J, Kwon S W. J. Chromatogr. A, 2011, 1218(51): 9174-9182

    16. [16]

      16 Almeida C, Fernandes J O, Cunha S C. Food Control, 2012, 25(1): 380-388

    17. [17]

      17 AliAwana M, Fleet I, Thomas C L. Food Chem., 2008, 111(2): 462-468

    18. [18]

      18 Kusch P, Knupp G, Hergarten M, Kozupab M, Majchrzak M. Int. J. Mass Spectrom., 2007, 263(1): 45-53

    19. [19]

      19 de Borba B M, Rohrer J S. J. Chromatogr. A, 2007, 1155(1): 22-30

    20. [20]

      20 Favaro G, Pastore P, Saccani G, Cavalli S. Food Chem., 2007, 105(4): 1652-1658

    21. [21]

      21 Cinquina A L, Cal A, Longo F, De Santis L, Severoni A, Abballe F. J. Chromatogr. A, 2004, 1032(1-2): 73-77

    22. [22]

      22 Lapa-Guimarães J, Pickova J. J. Chromatogr. A, 2004, 1045(1-2): 223-232

    23. [23]

      23 Tao Z H, Sato M, Han Y L, Tan Z J, Yamaguchi T, Nakano T. Food Control, 2011, 22(8): 1154-1157

    24. [24]

      24 Latorre-Moratalla M L, Bover-Cid S, Veciana-Nogués T, Vidal-Carou M C. J. Chromatogr. A, 2009, 1216(18): 4128-4132

    25. [25]

      25 Jastrzębska A, Kurzawa M, Piasta A, Szłyk E. Food Anal. Method, 2012, 5(5): 1079-1087

    26. [26]

      26 Vitali L, Valese AC, Azevedo M S, Gonzaga L V, Costa A C O, Piovezan M, Vistuba J P, Micke G A. Talanta, 2013, 106(12): 181-185

    27. [27]

      27 Pena-Gallego A, Hernández-Orte P, Cacho J, Ferreira V. J. Chromatogr. A, 2009, 1216(15): 3398-3401

    28. [28]

      28 de Mey E, Drabik-Markiewicz G, de Maere H, Peeters M C, Derdelinckx G, Paelinck H, Kowalska T. Food Chem., 2012, 130(4): 1017-1023

    29. [29]

      29 Proestos C, Loukatos P, Komaitis M. Food Chem., 2008, 106(3): 1218-1224

    30. [30]

      30 ZHANG Guo-Liang, ZHENG Dong-Mei, LI Xiao-dong, ZHANG Hong-Wei, LENG You-Bin, SUN Ai-Jie. China Dairy Industry, 2013, 41(2): 41-44张国梁, 郑冬梅, 李晓东, 张宏伟, 冷友斌, 孙爱杰. 中国乳品工业, 2013, 41(2): 41-44

    31. [31]

      31 SUN Ning, ZHAO Huai-Xin. China Dairy Industry, 2008, 36(7): 50-53孙 宁, 赵淮新. 中国乳品工业, 2008, 36(7): 50-53

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    3. [3]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    6. [6]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    7. [7]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    8. [8]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    9. [9]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    10. [10]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    11. [11]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    12. [12]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    13. [13]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    14. [14]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    15. [15]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    16. [16]

      Ling WANGWeipeng YANZhuoyi ZHENGSihan ZHUMingxian GONGXiangyu MA . Fabrication of biochar-supported nano zero-valent iron and its high-efficiency performance for Cr(Ⅵ) removal from wastewater. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2441-2454. doi: 10.11862/CJIC.20250264

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    20. [20]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

Metrics
  • PDF Downloads(0)
  • Abstract views(519)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return