Citation:
LI Zhi-Gang, PENG Si-Long, YANG Ni, WANG Qiao-Yun, LV Jiang-Tao, HU Xiao-Fei. Quantitative Analysis Method of Infrared Spectra Based on Derivative Spectra Fusion Modeling[J]. Chinese Journal of Analytical Chemistry,
;2016, 44(3): 437-443.
doi:
10.11895/j.issn.0253-3820.150765
-
A derivative spectral estimator (DSE) based on singular perturbation technique was designed and a quantitative analysis method based on derivative spectra information space, termed derivative spectra fusion interval partial least squares (DSF-iPLS) modeling was proposed. DSF-iPLS mainly focused on obtaining final fusion model by making full use of derivative spectra information. The glucose spectra dataset with concentrate ranging from 0.04% to 5% and the beer spectra dataset with the original extract concentration ranging from 4.23 to18.76°P (Plato) were used to evaluate the effectiveness of the proposed quantitative analysis method. The experiment results indicated that DSF-iPLS model for two infrared spectra datasets provided the minimum root mean square error of prediction (RMSEP) and the values were 0.121 and 0.087, respectively. Compared with other single model, DSF-iPLS model based derivative spectra could provide more excellent predictive performance.
-
-
-
[1]
1 Ribeiro J S, Ferreira M M C, Salva T J G. Talanta, 2011, 83(5): 1352-358
-
[2]
2 Jaiswal P, Jha S N, Borah A, Gautam A, Grewal M K, Jindal G. Food Chem., 2015, 168: 41-47
-
[3]
3 HeiseH M, Marbach R. Anal. Chem., 1989, 61(18): 2009-2015
-
[4]
4 LI Yan, WU Ran-Ran, YU Bai-Hua, WANG Jun-De. Spectroscopy and Spectral Analysis, 2006, 26(10): 1846-1849李 燕, 吴然然, 于佰华, 王俊德. 光谱学与光谱分析, 2006, 26(10): 1846-1849
-
[5]
5 ZUO Qi, CHEN Yao, SHI Cai-Xia, CHEN Zeng-Ping. Chinese J. Anal. Chem., 2015, 43(11): 1656-1663左 奇, 陈 瑶, 石彩霞, 陈增萍. 分析化学, 2015, 43(11): 1656-1663
-
[6]
6 WANG Lei, GUO Shu-Xia, DAI Yin-Zhen, YANG Liang-Bao, LIU Guo-Kun. Chinese J. Anal. Chem., 2015, 43(1): 33-39王 磊, 郭淑霞, 戴吟臻, 杨良保, 刘国坤. 分析化学, 2015, 43(1): 33-39
-
[7]
7 Polshin E, Aernouts B, Saeys W, Delvaux F, Delvaux F R, Saison D, Hertog M, Nicolai B M, Lammertyn J. J. Food Eng., 2011, 106(3): 188-198
-
[8]
8 Giovenzana V, Beghi R, Guidetti R. J. Food Eng., 2014, 142: 80-86
-
[9]
9 Shen F, Ying Y B, Li B B, Zheng Y F, Hu J G. Food Res. Int., 2011, 44(5): 1521-1527
-
[10]
10 Liao, Chien-Sheng, Slipchenko M N, Wang P. Light-Sci. Appl., 2015, 4: e265
-
[11]
11 SUN Yuan-Tao, ZHANG Hong-Tian. Chin. J. Lumin., 2015, 36(3): 366-369孙远涛, 张洪田. 发光学报, 2015, 36(3): 366-369
-
[12]
12 GAO Rong-Qiang, FAN Shi-Fu, YAN Yan-Lu, ZHAO Li-Li. Spectroscopy and Spectral Analysis, 2004, 24(12): 1563-1565高荣强, 范世福, 严衍禄, 赵丽丽. 光谱学与光谱分析, 2004, 24(12): 1563-1565
-
[13]
13 LIU Wei, ZHAO Zhong, YUAN Hong-Fu, SONG Chun-Feng, LI Xiao-Yu. Spectroscopy and Spectral Analysis, 2014, 34(4): 947-951刘 伟, 赵 众, 袁洪福, 宋春风, 李效玉. 光谱学与光谱分析, 2014, 34(4): 947-951
-
[14]
14 Rinnan Å, van den Berg F, Engelsen S B. TRAC-Trend. Anal. Chem., 2009, 28(10): 1201-1222
-
[15]
15 KharintsevS S, Kamalova D I, Salakhov M K. Appl. Spectrosc., 2000, 54(5): 721-730
-
[16]
16 Wang S C, Lin C J, Chiang S M, Yu S N. Anal. Chem., 2008, 80(6): 2097-2104
-
[17]
17 Ojeda C B, Rojas F S. Anal. Chim. Acta, 2009, 635(1): 22-44
-
[18]
18 Rojas F S, Ojeda C B. Microchem. J., 2013, 106: 1-16.
-
[19]
19 Savitzky A, Golay M J E. Anal. Chem., 1964, 36(8): 1627-1642
-
[20]
20 Mevik B H, Segtnan V H, Naes T. J. Chemometr., 2004, 18(11): 498-507
-
[21]
21 Kennard R W, Stone L A. Technometrics, 1969, 11: 137-148
-
[22]
22 Nørgaard L, Saudland A, Wagner J, Nielsen J P, Munck L, Engelsen S B. Appl. Spectrosc., 2000, 54(3): 413-419
-
[23]
23 Indahl U. J. Chemometr., 2005, 19(1): 32-44
-
[24]
24 Li Z G, Ma Z H. Circ. Syst. Signal Process., 2014, 33(2): 589-598
-
[25]
25 Haaland D M, Thomas E V. Anal. Chem., 1988, 60(11): 1193-1202
-
[26]
26 Breiman L. Mach. Learn., 1996, 24(1): 49-64
-
[27]
27 Moreira J M, Soares C, Jorge A M, Sousa J F. ACM Comput. Surv., 2012, 45(1): 10-40
-
[28]
28 Ni W D, Brown S D, Man R. J. Chemometr., 2009, 23(10): 505-517
-
[29]
29 Bi Y M, Xie Q, Peng S L, Tang L, Hu Y, Tan J, Zhao Y H, Li C W. Anal. Chim. Acta, 2013, 792: 19-27
-
[1]
-
-
-
[1]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[2]
Ling Bai , Limin Lu , Xiaoqiang Wang , Dongping Wu , Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101
-
[3]
Mi Wen , Baoshuo Jia , Yongqi Chai , Tong Wang , Jianbo Liu , Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147
-
[4]
Zhaoyang Li , Haiyan Zhao , Yali Zhang , Yuan Zhang , Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131
-
[5]
Congying Wen , Zhengkun Du , Yukun Lu , Zongting Wang , Hua He , Limin Yang , Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089
-
[6]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[7]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[8]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[9]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[10]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[11]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[12]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[13]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[14]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014
-
[15]
Linlin Guo , Jinjun Zhang , Chengpeng Miao , Bojing Liu , Xiaozhen Fan . Design and Practice of Integrating Ideological and Political Education into Instrumental Analysis Course Based on OBE Concept: Introduction. University Chemistry, 2024, 39(11): 87-95. doi: 10.12461/PKU.DXHX202403001
-
[16]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[17]
Cheng Zheng , Shiying Zheng , Yanping Zhang , Shoutian Zheng , Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131
-
[18]
Tingting Yu , Si Chen , Lianglong Sun , Tongtong Shi , Kai Sun , Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022
-
[19]
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
-
[20]
Wenliang Wang , Weina Wang , Lixia Feng , Nan Wei , Sufan Wang , Tian Sheng , Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(360)
- HTML views(18)