Citation: LI Zhi-Gang, PENG Si-Long, YANG Ni, WANG Qiao-Yun, LV Jiang-Tao, HU Xiao-Fei. Quantitative Analysis Method of Infrared Spectra Based on Derivative Spectra Fusion Modeling[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 437-443. doi: 10.11895/j.issn.0253-3820.150765 shu

Quantitative Analysis Method of Infrared Spectra Based on Derivative Spectra Fusion Modeling

  • Corresponding author: LI Zhi-Gang, 
  • Received Date: 28 September 2015
    Available Online: 15 December 2015

    Fund Project: 本文系国家自然科学基金(No.11404054) (No.11404054)河北省自然科学基金项目(No.F2016501138,F2014501127)资助 (No.F2016501138,F2014501127)

  • A derivative spectral estimator (DSE) based on singular perturbation technique was designed and a quantitative analysis method based on derivative spectra information space, termed derivative spectra fusion interval partial least squares (DSF-iPLS) modeling was proposed. DSF-iPLS mainly focused on obtaining final fusion model by making full use of derivative spectra information. The glucose spectra dataset with concentrate ranging from 0.04% to 5% and the beer spectra dataset with the original extract concentration ranging from 4.23 to18.76°P (Plato) were used to evaluate the effectiveness of the proposed quantitative analysis method. The experiment results indicated that DSF-iPLS model for two infrared spectra datasets provided the minimum root mean square error of prediction (RMSEP) and the values were 0.121 and 0.087, respectively. Compared with other single model, DSF-iPLS model based derivative spectra could provide more excellent predictive performance.
  • 加载中
    1. [1]

      1 Ribeiro J S, Ferreira M M C, Salva T J G. Talanta, 2011, 83(5): 1352-358

    2. [2]

      2 Jaiswal P, Jha S N, Borah A, Gautam A, Grewal M K, Jindal G. Food Chem., 2015, 168: 41-47

    3. [3]

      3 HeiseH M, Marbach R. Anal. Chem., 1989, 61(18): 2009-2015

    4. [4]

      4 LI Yan, WU Ran-Ran, YU Bai-Hua, WANG Jun-De. Spectroscopy and Spectral Analysis, 2006, 26(10): 1846-1849李 燕, 吴然然, 于佰华, 王俊德. 光谱学与光谱分析, 2006, 26(10): 1846-1849

    5. [5]

      5 ZUO Qi, CHEN Yao, SHI Cai-Xia, CHEN Zeng-Ping. Chinese J. Anal. Chem., 2015, 43(11): 1656-1663左 奇, 陈 瑶, 石彩霞, 陈增萍. 分析化学, 2015, 43(11): 1656-1663

    6. [6]

      6 WANG Lei, GUO Shu-Xia, DAI Yin-Zhen, YANG Liang-Bao, LIU Guo-Kun. Chinese J. Anal. Chem., 2015, 43(1): 33-39王 磊, 郭淑霞, 戴吟臻, 杨良保, 刘国坤. 分析化学, 2015, 43(1): 33-39

    7. [7]

      7 Polshin E, Aernouts B, Saeys W, Delvaux F, Delvaux F R, Saison D, Hertog M, Nicolai B M, Lammertyn J. J. Food Eng., 2011, 106(3): 188-198

    8. [8]

      8 Giovenzana V, Beghi R, Guidetti R. J. Food Eng., 2014, 142: 80-86

    9. [9]

      9 Shen F, Ying Y B, Li B B, Zheng Y F, Hu J G. Food Res. Int., 2011, 44(5): 1521-1527

    10. [10]

      10 Liao, Chien-Sheng, Slipchenko M N, Wang P. Light-Sci. Appl., 2015, 4: e265

    11. [11]

      11 SUN Yuan-Tao, ZHANG Hong-Tian. Chin. J. Lumin., 2015, 36(3): 366-369孙远涛, 张洪田. 发光学报, 2015, 36(3): 366-369

    12. [12]

      12 GAO Rong-Qiang, FAN Shi-Fu, YAN Yan-Lu, ZHAO Li-Li. Spectroscopy and Spectral Analysis, 2004, 24(12): 1563-1565高荣强, 范世福, 严衍禄, 赵丽丽. 光谱学与光谱分析, 2004, 24(12): 1563-1565

    13. [13]

      13 LIU Wei, ZHAO Zhong, YUAN Hong-Fu, SONG Chun-Feng, LI Xiao-Yu. Spectroscopy and Spectral Analysis, 2014, 34(4): 947-951刘 伟, 赵 众, 袁洪福, 宋春风, 李效玉. 光谱学与光谱分析, 2014, 34(4): 947-951

    14. [14]

      14 Rinnan Å, van den Berg F, Engelsen S B. TRAC-Trend. Anal. Chem., 2009, 28(10): 1201-1222

    15. [15]

      15 KharintsevS S, Kamalova D I, Salakhov M K. Appl. Spectrosc., 2000, 54(5): 721-730

    16. [16]

      16 Wang S C, Lin C J, Chiang S M, Yu S N. Anal. Chem., 2008, 80(6): 2097-2104

    17. [17]

      17 Ojeda C B, Rojas F S. Anal. Chim. Acta, 2009, 635(1): 22-44

    18. [18]

      18 Rojas F S, Ojeda C B. Microchem. J., 2013, 106: 1-16.

    19. [19]

      19 Savitzky A, Golay M J E. Anal. Chem., 1964, 36(8): 1627-1642

    20. [20]

      20 Mevik B H, Segtnan V H, Naes T. J. Chemometr., 2004, 18(11): 498-507

    21. [21]

      21 Kennard R W, Stone L A. Technometrics, 1969, 11: 137-148

    22. [22]

      22 Nørgaard L, Saudland A, Wagner J, Nielsen J P, Munck L, Engelsen S B. Appl. Spectrosc., 2000, 54(3): 413-419

    23. [23]

      23 Indahl U. J. Chemometr., 2005, 19(1): 32-44

    24. [24]

      24 Li Z G, Ma Z H. Circ. Syst. Signal Process., 2014, 33(2): 589-598

    25. [25]

      25 Haaland D M, Thomas E V. Anal. Chem., 1988, 60(11): 1193-1202

    26. [26]

      26 Breiman L. Mach. Learn., 1996, 24(1): 49-64

    27. [27]

      27 Moreira J M, Soares C, Jorge A M, Sousa J F. ACM Comput. Surv., 2012, 45(1): 10-40

    28. [28]

      28 Ni W D, Brown S D, Man R. J. Chemometr., 2009, 23(10): 505-517

    29. [29]

      29 Bi Y M, Xie Q, Peng S L, Tang L, Hu Y, Tan J, Zhao Y H, Li C W. Anal. Chim. Acta, 2013, 792: 19-27

  • 加载中
    1. [1]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    2. [2]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    3. [3]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    4. [4]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    5. [5]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    6. [6]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    7. [7]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    8. [8]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    9. [9]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    10. [10]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    11. [11]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    12. [12]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    13. [13]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    15. [15]

      Linlin Guo Jinjun Zhang Chengpeng Miao Bojing Liu Xiaozhen Fan . Design and Practice of Integrating Ideological and Political Education into Instrumental Analysis Course Based on OBE Concept: Introduction. University Chemistry, 2024, 39(11): 87-95. doi: 10.12461/PKU.DXHX202403001

    16. [16]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    17. [17]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    18. [18]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    19. [19]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    20. [20]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

Metrics
  • PDF Downloads(0)
  • Abstract views(360)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return