Citation: HONG Xiao-Yu, WANG Hao, XU Jin-Ling, LI Shui-Ming, WANG Yong. Application of High Resolution Time-of-Flight Mass Spectroscopy in Relative Quantitative Analysis in Proteomics[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 403-408. doi: 10.11895/j.issn.0253-3820.150751 shu

Application of High Resolution Time-of-Flight Mass Spectroscopy in Relative Quantitative Analysis in Proteomics

  • Corresponding author: WANG Yong, 
  • Received Date: 22 September 2015
    Available Online: 12 December 2015

    Fund Project: 本文系深圳市科技项目(Nos.JSGG20140703163838793,20150006)资助 (Nos.JSGG20140703163838793,20150006)

  • By using the high resolution mass spectrometer TripleTOF 5600, three kinds of standard proteins including bovine serum albumin (BSA), ovalbumin (OVA) and lysozyme C(LYZC) were analyzed, and the correlationship between the ion intensity of mass spectrometry and the relative content of protein sample was investigated. The protein samples were digested by trypsion and diluted to 1-1024 fmol in 7 μL. The ion counts per second (cps) were used to stand for the amounts of proteins and peptides. Then the correlation between sum of ion intensity (cps) of all the peptides, number of peptides detected and the amount of proteins was investigated. By comparing the change of values of the same sample in three parallel experiments, a linear relationship between these indexes and the amount of proteins within 1-1024 fmol was found when the cps was more than 1000. Usually, the maximal ion intensity was no more than 1.5 times of the minimum value for same peptide in triplicate experiments, which suggested that the 3 times or more change of ion intensity was the minimum threshold to determine the differences of proteins amounts in different samples. This study provides a relative quantitative analysis method using qualitative data of high resolution and high scan speed mass spectrometry, which can quickly and easily provide reference for biological and medical research.
  • 加载中
    1. [1]

      1 Yates J R, Washburn M P. Anal. Chem., 2013, 85(19): 8881

    2. [2]

      2 Griffiths J. Anal. Chem., 2007, 79(17): 6451-6454

    3. [3]

      3 LV J N, Ma S P, Zhang X F, Zheng L J, Ma Y H, Zhao X Y, Lai W J, Shen H Y, Wang Q S, Ji J G. J. Proteom., 2014, 110(3): 45-58

    4. [4]

      4 Altelaar A F, Munoz J, Heck A J. Nat. Rev. Genet., 2013, 14(1): 35-48

    5. [5]

      5 Teramoto R, Minagawa H, Honda M, Miyazaki K, Tabuse Y, Kamijo K, Ueda T, Kaneko S. Biochim. Biophys. Acta., 2008, 1784(5): 764-772

    6. [6]

      6 Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T. J. Neurochem., 2011, 117(2): 333-345

    7. [7]

      7 Nie A Y, Zhang L, Yan G Q, Yao J, Zhang Y, Lu H J, Yang P Y, He F C. Anal. Chem., 2011, 83(15): 6026-6033

    8. [8]

      8 Tian R J, Wang S, Elisma F, Li L, Zhou H, Wang L S, Figeys D. Mol. Cell Proteom., 2011, 10(2): M110.000679

    9. [9]

      9 Sudhir P R, Chen C H, Pavana Kumari M, Wang M J, Tsou C C, Sung T Y, Chen J Y, Chen C H. Mol. Cell Proteom., 2012, 11(10): 901-915

    10. [10]

      10 Chahrour O, Cobice D, Malone J. J. Pharm. Biomed. Anal., 2015, 113: 2-20

    11. [11]

      11 Matros A, Kaspar S, Witzel K, Mock H P. Phytochemistry., 2011, 72(10): 963-974

    12. [12]

      12 ZHU Jin-Lei, ZHANG Kai, HE XI-Wen, ZHANG Yu-Kui. Chinese J. Anal.Chem., 2010, 38(3): 434-441朱金蕾, 张 锴, 何锡文, 张玉奎. 分析化学, 2010, 38(3): 434-441

    13. [13]

      13 Lanucara F, Eyers C E. Methods in Enzymology,San Diego: Elsevier Academic Press Inc 2011, 500: 133-150

    14. [14]

      14 Dephoure N, Gygi S P. Sci. Signal., 2012, 5(217): rs2

    15. [15]

      15 WU Peng, He Fu-Chu, JIANG Ying. Prog. Biochem. Biophys., 2013, 40(3): 281-292武 鹏, 贺福初, 姜 颖. 生物化学与生物物理进展, 2013, 40(3): 281-292

    16. [16]

      16 ZHANG Wei. Chinese J. Anal.Chem., 2014, 42(12): 1859-1868张 伟. 分析化学, 2014, 42(12): 1859-1868

    17. [17]

      17 Clarke D J, Campopiano D J. Analyst, 2015, 140(8): 2679-2686

    18. [18]

      18 Schubert O T, Gillet L C, Collins B C, Navarro P, Rosenberger G, Wolski W, Lam H, Amodei D, Mallick P, MacLean B, Aebersold R. Nat. Protoc., 2015, 10(3): 426-441

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    3. [3]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    4. [4]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    5. [5]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    6. [6]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    7. [7]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    10. [10]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    11. [11]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    12. [12]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    13. [13]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    14. [14]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    17. [17]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    18. [18]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    19. [19]

      Jiantao Zai Hongjin Chen Xiao Wei Li Zhang Li Ma Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023

    20. [20]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

Metrics
  • PDF Downloads(0)
  • Abstract views(306)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return