Citation: LI Shan, CHEN Chi-Lai, ZHU De-Quan, WANG Hong-Wei, LIU You-Jiang, RUAN Zhi-Ming, YU Jian-Wen, ZHU Li-Kai. Research on Low Flow Rate and Voltage Micro Differential Mobility Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2015, 43(12): 1814-1819. doi: 10.11895/j.issn.0253-3820.150656 shu

Research on Low Flow Rate and Voltage Micro Differential Mobility Spectrometry

  • Corresponding author: CHEN Chi-Lai, 
  • Received Date: 19 August 2015
    Available Online: 16 September 2015

    Fund Project: 本文系国家自然科学基金(No.61374016) (No.61374016)中国科学院青年创新促进会(No.2013213) (No.2013213)中科院科技服务网络计划项目(No.KFJ-EW-STS-083)资助项目 (No.KFJ-EW-STS-083)

  • Differential mobility spectrometry(DMS), as a standard tool to detect submicron aerosol particles, is gradually expanding its application to molecular detection in recent years. However, the operating voltage(>1 kV) and gas flow(>100 L/min) of DMS are required in charged particles detection, whereas they are too large for field detection of ions. In this work, we designed a UV-DMS device with narrow gap ion drift tube, fabricated by thick film technology and able to operate under low flow rate(< 7 L/min) and low voltage(< 30 V). Four kinds of volatile organic compounds(VOCs)(acetone, 2-butatone, o-xylene, p-xylene) were chosen as examples to study the resolution, sensitivity and the obtaining of ion mobility. The results showed that the flow rate ratio of sheath gas and carrier gas Qs/Qa was the key parameter of UV-DMS resolution and sensitivity. The sensitivity of all examples increased significantly with Qs/Qa from 3 to 9 and then slowly decreased. Meanwhile, the resolution increased markedly with Qs/Qa from 3 to 6, and reached saturation during 6 to 10. Both sensitivity and resolution became unstable when Qs/Qa was over 10. The ion mobility deviation between experiment and reference was less than 3%. The detection limit was 0.6μg/L with S/N ratio of 3. This work provided a basis for the miniaturization and parameters optimization of DMS in molecular detection.
  • 加载中
    1. [1]

      1 SHI Ying-Guo, SHAO Shi-Yong, LI An-Lin, YAO Lian, WANG Bin, LI Fang, WANG Jun-De, LI Hai-Yang. Chinese J.Anal. Chem., 2006, 34(9):1353-1356 时迎国, 邵士勇, 李安林, 姚 琏, 王 宾, 李 芳, 王俊德, 李海洋. 分析化学, 2006, 34(9):1353-1356

    2. [2]

      2 Bell S E, Ewing R G,Eiceman G A, Karpas Z. J. Am. Soc. Mass Spectrom., 1994, 5:177-185

    3. [3]

      3 Armenta S, Alcala M, Blanco M. Anal. Chem., 2011, 703(2):114-123

    4. [4]

      4 Ewing R G, Miller C. Field Analytical Chemistry and Technology, 2001, 15(5):215-221

    5. [5]

      5 Teepe M, Baumbach J I, Neyer A, Schmidt H, Pilzecker P. International Journal of Information and Management Sciences, 2001, 61:60-64

    6. [6]

      6 Brunner T, Mueller A R, Sullivan K O, Simon M C, Kossick M, Ettenauer S, Gallant A T. International Journal of Mass Spectrometry, 2012, 302-97

    7. [7]

      7 WANG Wei-Guo, LIANG Xi-Xi, CHENG Sha-Sha, CHEN Chuang, WEN Meng, PENG Li-Ying, ZHOU Qing-Hua, LI Hai-Yang. Science Bulletin., 2014, 59:1079-1086 王卫国, 梁茜茜, 程沙沙, 陈 创, 温 萌, 彭丽英, 周庆华, 李海洋. 科学通报, 2014, 59:1079-1086

    8. [8]

      8 ZHANG De-Xin, GAO Xiao-Guang, JIA Jian, HE Xiu-Li, LI Jian-Ping. Chinese J. Anal. Chem., 2011, 39(10):1491-1495 张德馨, 高晓光, 贾 建, 何秀丽, 李建平. 分析化学, 2011, 39(10):1491-1495

    9. [9]

      9 Miller R A,Eiceman G A, Nazarov E G, King A T. Sensors and Actuators B., 2000, 67:300-306

    10. [10]

      10 Intra P, Tippayawong N. Songklanakar in Journal of Science and Technology, 2008, 30(2):243-256

    11. [11]

      11 Biskos G, Reavell K, Collings N. Aerosol Science and Technology, 2005, 39(6):527-541

    12. [12]

      12 Chen D R,Pui D Y H, Hummes D. Journal of Aerosol Science, 1998, 29(5-6):497-509

    13. [13]

      13 Bacher G, Szymanski W W, Kaufman S L. Journal of Mass Spectrometry, 2001, 36(9):1038-1052

    14. [14]

      14 Pomareda V, Lopez-Vidal S, Calvo D. Analyst., 2013, 138(12):3512-3521

    15. [15]

      15 LIN Bing-Tao, CHEN Chi-Lai, KONG De-Yi, LI Zhuang, WANG Huan-Qin, CHENG Yu-Peng, WANG Dian-Ling, MEI Tao. Chinese J. Anal. Chem., 2010, 38(7):1027-1030 林丙涛, 陈池来, 孔德义, 李 庄, 王焕钦, 程玉鹏, 王电令, 梅 涛. 分析化学, 2010, 38(7):1027-1030

    16. [16]

      16 Miller R A,Nazarov E G, Eiceman G A, Thomas K A. Sensors and Actuators A, 2001, 91(3):301-312

    17. [17]

      17 Zhang M, Wexler A S. International Journal of Mass Spectrometry, 2006, 258(1-3):13-20

    18. [18]

      18 Leasure C S, Fleischer M E, Anderson G K. Anal. Chem., 1986, 58(11):2142-2147

  • 加载中
    1. [1]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    2. [2]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    3. [3]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    4. [4]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    7. [7]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    9. [9]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    10. [10]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    15. [15]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    16. [16]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    17. [17]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    18. [18]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    19. [19]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    20. [20]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

Metrics
  • PDF Downloads(0)
  • Abstract views(389)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return