Citation: DAI Meng-Ning, BAO Zhi-An, CHEN Kai-Yun, YUAN Hong-Lin. In Situ Analysis of Mg Isotopic Compositions of Basalt Glasses by Femtosecond Laser Ablation Multi-collector Inductively Coupled Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(2): 173-178. doi: 10.11895/j.issn.0253-3820.150602 shu

In Situ Analysis of Mg Isotopic Compositions of Basalt Glasses by Femtosecond Laser Ablation Multi-collector Inductively Coupled Mass Spectrometry

  • Corresponding author: YUAN Hong-Lin, 
  • Received Date: 29 July 2015
    Available Online: 30 October 2015

    Fund Project: 本文系国家自然科学基金(Nos. 41427804,41421002,41373004) (Nos. 41427804,41421002,41373004)长江学者和创新团队发展计划(IRT1281)资助项目 (IRT1281)

  • A method was developed for the in situ analysis of magnesium isotopes by femtosecond laser ablation multi-collector inductively coupled mass spectrometry (fsLA-MC-ICP-MS). Concentration matching experiment revealed that the Mg isotopic composition could be measured accurately when Mg concentration difference between sample and standard was in the range of 0.4-3.0. The Mg isotopic composition was affected by the femtosecond laser conditions, including laser spot size and scanning speed, due to mass discrimination changing which was caused by different mass loading into mass spectrometer. The amount of ablated aerosol was correlated with laser frequency, laser ablation spot size, scanning speed. However, the laser energy density showed negligible effect on the accuracy of Mg isotope measurement due to the high energy output of femtosecond which was higher than the ablation threshold. To obtain reliable Mg isotopic compositions, the laser ablation spot size, laser frequency and scanning speed should be consistent during one analytical section and the difference of Mg concentration between standard and samples should be in 3 times. The analytical results of two reference materials agreed well with the published values within 2 s analytical uncertainties. The developed method is simple, reliable and accurate, and can be used for the Mg isotope analysis of volcanic glasses and silicate minerals.
  • 加载中
    1. [1]

      1 Teng F Z, Li W Y, Rudnick R L, Gardner L R. Earth Planetary Sci. Lett., 2010, 300: 63-71

    2. [2]

      2 Liu S B, Teng F Z, He Y S Ke S, Li S G. Earth Planetary Sci. Lett., 2010, 297: 646-654

    3. [3]

      3 Yang W, Teng F Z, Zhang H F. Earth Planetary Sci. Lett., 2009, 288: 475-482

    4. [4]

      4 Li W Y, Teng F Z, Ke S, Rudnick R L, Gao S, Wu F Y, Chappell B W. Geochim. Cosmochim. Acta, 2010, 74: 6867-6884

    5. [5]

      5 Richter F M, Watson E B,Mendybaev R A, Teng F Z, Janney P E. Geochim. Cosmochim. Acta, 2008, 72: 206-220

    6. [6]

      6 Huang F, Glessner J, Ianno A, Lundstrom C, Zhang Z F. Chem. Geol., 2009, 268: 16-23

    7. [7]

      7 Higgins J A,Schrag D P. Geochim. Cosmochim. Acta, 2010, 74: 5039-5053

    8. [8]

      8 Ra K, Kitagawa H, Shiraiwa Y. Mar. Micropaleontol., 2010, 77: 119-124

    9. [9]

      9 Ke S, Liu S A, Li W Y, Yang W, Teng F Z. Acta Petrologica Sinica, 2011, 27(2): 383-397

    10. [10]

      10 Huang F. Acta Petrologica Sinica, 2011, 27(2): 365-382

    11. [11]

      11 Teng F Z, Yang W. Rapid Commun. Mass Spectrom., 2014, 28: 19-24

    12. [12]

      12 Huang F, Chen L J, Wu Z Q, Wang W. Earth Planetary Sci. Lett., 2013, 367: 61-70

    13. [13]

      13 Xiao Y, Teng F Z, Zhang H F, Yang W. Geochim. Cosmochim. Acta, 2013, 115: 241-261

    14. [14]

      14 Li W Q, Beard B L, Li C X, Xu H F, Johnson C M. Geochim. Cosmochim. Acta, 2015, 157: 164-181

    15. [15]

      15 Galy A, Yoffe O, Janney P E, Williams R W, Cloquet C, Alard O, Halicz L, Wadhwa M,Hutcheon I D, Ramond E, Carignan J. J. Anal. At. Spectrom., 2003, 18: 1352-1356

    16. [16]

      16 Tipper E T,Louvat P, Capmas F, Galy A, Gaillardet J. Chem. Geol., 2008, 257: 65-75

    17. [17]

      17 Wang Z R, Hu P, Gaetani G, Liu C, Saenger C, Cohen A, Hart S. Geochim. Cosmochim. Acta, 2013, 102: 113-123

    18. [18]

      18 Teng F Z, Wadhwa M, Helz R T. Earth Planetary Sci. Lett., 2007, 261: 84-92

    19. [19]

      19 Chang V T C,Makishima A, Belshaw N S, O'Nions R K. J. Anal. At. Spectrom, 2003, 18: 296-301

    20. [20]

      20 An Y J, Wu F, Xiang Y X, Nan X Y, Yu X, Yang J H, Yu H M, Xie L W, Huang F. Chem. Geol., 2014, 390: 9-21

    21. [21]

      21 Young E D, Ash R D,Galy A, Belshaw N S. Geochim. Cosmochim. Acta, 2002, 66(4): 683-698

    22. [22]

      22 Pearson N J, Griffin W L, Alard O, O'Reilly S Y. Chem. Geol., 2006, 226: 115-133

    23. [23]

      23 Norman M D, McCulloch M T, O'Neill H S C, Yaxley G M. J. Anal. At. Spectrom., 2006, 21: 50-54

    24. [24]

      24 Young E D,Tonui E, Manning C E, Schauble E, Macris C A. Earth Planetary Sci. Lett., 2009, 288: 524-533

    25. [25]

      25 Janney P E, Richter F M, Mendybaev R A, Wadhwa M, Georg R B, Watson E B, Hines R R. Chem. Geol., 2011, 281: 26-40

    26. [26]

      26 Xie L W, Yin Q Z, Yang J H, Wu F Y, Yang Y H. J. Anal. At. Spectrom., 2011, 26: 1773-1780

    27. [27]

      27 Sio C K I, Dauphas N, TENG Fang-Zhen, Chaussidon M, Helz R T, Roskosz M. Geochim. Cosmochim. Acta, 2013, 123(15): 302-321

    28. [28]

      28 Oeser M, Weyer S, Horn I, Schuth S. Geostandard Geoanal. Res., 2014, 38(9): 311-328

    29. [29]

      29 Sun Y L, Dong W F, Niu L G, Jiang T, Liu D X, Zhang L, Wang Y S, Chen Q D, Kim D P, Sun H B. Light-Sci. Appl., 2014, 3(1): e129

    30. [30]

      30 BIAN Chen-Guang, WANG Li, WANG Yan-Qiu, SONG Zhe, LIU Ben-Kang. Chinese J. Anal. Chem., 2015, 43(8): 1241-1246 边晨光, 王 利, 王艳秋, 宋 哲, 刘本康. 分析化学, 2015, 43(8): 1241-1246

    31. [31]

      31 Wang G Q, Lin Y T, Liang X R, Liu Y, Xie L W, Yang Y H, Tu X L. J. Anal. At. Spectrom, 2011, 26: 1878-1886

    32. [32]

      32 HE Xue-Xian, ZHU Xiang-Kun, LI Shi-Zhen, TANG Suo-Han. Acta Petrologica et Mineralogica, 2008, 27(5): 441-448 何学贤, 朱祥坤, 李世珍, 唐索寒. 岩石矿物学杂志, 2008, 27(5): 441-448

    33. [33]

      33 Galy A, Belshaw N S, Halicz L, O'Nions R K. Inter. J. Mass Spectrom., 2001, 208: 89-98

  • 加载中
    1. [1]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    2. [2]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    6. [6]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    7. [7]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    8. [8]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    9. [9]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    10. [10]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    11. [11]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    12. [12]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    13. [13]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Sinong WangShanshan JinXue YangYanyan HuangPeng LiuYi TangYuliang Yang . Development of Mg-Al LDH and LDO as novel protective materials for deacidification of paper-based relics. Chinese Chemical Letters, 2024, 35(9): 109890-. doi: 10.1016/j.cclet.2024.109890

    16. [16]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    17. [17]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    18. [18]

      Naiying Fan Chuanli Qin Guo Zhang Bin Wang Yan Wang Bing Zheng Yichun Qu Zhiyao Sun Guanghui An . Case Design of Course Ideological and Political Education in Chemical Experiment Safety: the Safe Use of Common Laboratory Instruments and Glassware. University Chemistry, 2024, 39(2): 242-247. doi: 10.3866/PKU.DXHX202309061

    19. [19]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    20. [20]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

Metrics
  • PDF Downloads(0)
  • Abstract views(764)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return