Citation:
LI Zhe-Yu, SUN Kai, ZHANG Xiao-Yan, LIU Shao-Qin, JIANG Lei, REN Nan-Qi. Advance in Microfluidic Devices for Fractionation of DNA Fragments[J]. Chinese Journal of Analytical Chemistry,
;2016, 44(4): 569-578.
doi:
10.11895/j.issn.0253-3820.150589
-
Current next generation sequencing works faster and the price is coming down. However, the workflows have numerous manual processes, which contribute to bottleneck and process inefficiency. One of the most time consuming steps is electrophoretic gel-based fractionation of a large number of fragments of interest from the library generation process. In recent years, several instruments were first introduced into the market, and then were tested soon by many famous DNA sequencing centers and platforms. This paper introduces the development of DNA fractionation techniques including capillary electrophoresis and microfluidic devices. Moreover, our argument raises the bottleneck in fractionating DNA fragments on the chips. Finally, we provide insights into the challenges of DNA fractionation and perspectives.
-
-
-
[1]
1 Ding L, Stilwell J, Zhang T, Elboudwarej O, Jiang H, Selegue J P, Cooke P A, Gray J W, Chen F F. Nano Lett., 2005, 5(12):2448-2464
-
[2]
2 Heidi L. Nature, 2008, doi:10.1038/news. 2008.439
-
[3]
3 Collins F S, Morgan M, Patrinos A. Science, 2003, 300(5617):286-290
-
[4]
4 Fukumura R, Takahashi H, Saito T, Tsutsumi Y, Fujimori A, Sato S, Tatsumi K, Araki R, Abe M. Nucleic Acids Res., 2003, 31(16):e94-e94
-
[5]
5 Kostal V, Katzenmeyer J, Arriaga E A. Anal. Chem., 2008, 80(12):4533-4550
-
[6]
6 Kłodzińska E, Buszewski B. Anal. Chem., 2009, 81(1):8-15
-
[7]
7 Lin M, Rich R G, Shipley R F, Hafez M J. J. Mol. Diagn., 2007, 9(5):598-603
-
[8]
8 Minarik M, Foret F, karger B L. Electrophoresis, 2000, 21(1), 247-254
-
[9]
9 Irie T, Oshida T, Hasegawa H, Matsuoka Y, Li T, Oya Y, Tanaka T, Tsujimoto G, Kambara H. Electrophoresis, 2000, 21(2):367-374
-
[10]
10 Huge B J, Flaherty R J, Dada OO, Dovichi N J. Talanta, 2014, 130(1):288-293
-
[11]
11 Vannatta M W, Whitmore C D, Dovichi N J. Electrophoresis, 2009, 30(23):4071-4074
-
[12]
12 Minarik M, Kleparnik K, Gilar M, Foret F, Miller A W, Sosic Z, Karger B L. Electrophoresis, 2002, 23(1):35-42
-
[13]
13 Lim K S, Naviaux R K, Wong S, Haas R H. J. Mol. Diagn., 2008, 10(1):102-108
-
[14]
14 Mitchell P. Nat. Biotechnol., 2001, 19:717-721
-
[15]
15 Auroux P A, Iossifidis D, Reyes D R, Manz A. Anal. Chem., 2002, 74(12):2637-2652
-
[16]
16 Reyes D R, Iossifidis D, Auroux P A, Manz A. Anal. Chem., 2002, 74(12):2623-2636
-
[17]
17 Harrison D J, Fluri K, Seiler K, Fan Z, Effenhauser C S, Manz A. Science, 1993, 261(5123):895-897
-
[18]
18 Woolley A T, Mathies R A. Anal. Chem., 1995, 67(20):3676-3680
-
[19]
19 Shi Y, Anderson R C. Electrophoresis, 2003, 24(19-20):3371-3377
-
[20]
20 Yi LL, Xu X Q, Lin X X, Li H F, Ma Y, Lin J M. Analyst, 2014, 139(13):3330-3335
-
[21]
21 Deng Y, Yi LL, Lin X X, Lin L, Li H F, Lin J M. Talanta, 2015, 144:136-144
-
[22]
22 Footz T, Wunsam S, Kulak S, Crabtree H J, Glerum D M, Backhouse C J. Electrophoresis, 2001, 22(18):3868-3875
-
[23]
23 Effenhauser C S, Manz A, Widmer H M. Anal. Chem., 1993, 65(19):2637-2642
-
[24]
24 Effenhauser C S, Manz A, Widmer H M. Anal. Chem., 1995, 67(13):2284-2287
-
[25]
25 Khandurina J, Chovan T, Guttman A. Anal. Chem., 2002, 74(7):1737-1740
-
[26]
26 Khandurina J, Guttman A. J. Chromatogr. A, 2002, 979(1-2):105-113
-
[27]
27 Li G, Ran R, Zhao J, Xu Y. Electrophoresis, 2007, 28(24):4661-4667
-
[28]
28 Lin R, Burke D T, Bruns M A. J. Chromatogr. A, 2003, 1010(2):255-268
-
[29]
29 Lin R, Burke D T, Bruns M A. Anal. Chem., 2005, 77(14):4338-4347
-
[30]
30 Kuo T, Cannon D M, Chen Y, Tulock J J, Shannon M A, Sweedler J V, Bohn P W. Anal. Chem., 2003, 75(8):1861-1867
-
[31]
31 Tulock J J, Shannon M A, Bohn P W, Sweedler J V. Anal. Chem., 2004, 76(21):6419-6425
-
[32]
32 Bharadwaj R, Santiago J G, Mohammadi B. Electrophoresis, 2002, 23(16):2729-2744
-
[33]
33 Dittrich P S, Schwille P. Anal. Chem., 2003, 75(21):5767-5774
-
[34]
34 Fu L M, Yang R J, Lee G B. Anal. Chem., 2003, 75(8):1905-1910
-
[35]
35 Sun K, Li Z, Ueno K, Juodkazis S, Noji S, Misawa H. Electrophoresis, 2007, 28(10):1572-1578
-
[36]
36 Sun K, Suzuki N, Li Z Y, Araki R, Ueno K, Juodkazis S, Abe M, Noji S, Misawa H. Electrophoresis, 2008, 29(19):3959-3963
-
[37]
37 Shen Z, Liu X J, Long Z C, Liu D Y, Ye N N, Qin J H, Dai Z P, Lin B C. Electrophoresis, 2006, 27(5-6):1084-1092
-
[38]
38 Dang F, Shinohara S,Tabata O, Yamaoka Y, Kurokawa M, Shinohara Y, Ishikawa M, Baba Y. Lab Chip, 2005, 5(4):472-478
-
[39]
39 Dang F, Tabata O, Kurokawa M, Ewis A A, Zhang L, Yamaoka Y, Shinohara S, Shinohara Y, Ishikawa M, Baba Y. Anal. Chem., 2005, 77(7):2140-2146
-
[40]
40 Inoue A, Ito T, Makino K, Hosokawa K, Maeda M. Anal. Chem., 2007, 79(5):2168-2173
-
[41]
41 Li Z Y, Sun K, Sunayama M, Araki R, Ueno K, Abe M, Misawa H. J. Chromatogr. A, 2011, 1218(7):997-1003
-
[42]
42 Wang Z, Justine T, Jemere A B, Harrison D J. Electrophoresis, 2010, 31(15):2575-2583
-
[43]
43 Hua Y, Jemere A B, Dragoljic J, Harrison D J. Lab Chip, 2013, 13(13):2651-2659
-
[44]
44 Baker C A, Roper M G. J. Chromatogr. A, 2010, 1217(28):4743-4748
-
[45]
45 Sun K, Suzuki N, Li Z Y, Araki R, Ueno K, Juodkazis S, Abe M, Noji S, Misawa H. Electrophoresis, 2009, 30(24):4277-4284
-
[46]
46 Li Z Y, Sun K, Sunayama M, Araki R, Ueno K, Abe M, Misawa H. Electrophoresis, 2011, 32(23):3392-3398
-
[47]
47 Sun K, Li Z Y, You S J, Zhang X Y, Ren N Q. Microfluid. Nanofluid., 2015, 19(2):291-298
-
[48]
48 Huang R L, Jonas T O, Jessica K J, James S C, Robert A H, Cox E C. Nat. Biotech., 2002, 20:1048-1051
-
[49]
49 Hattori W, Someya H, Baba M, Kawaura H. J. Chromatogr. A, 2004, 1051(1-2):141-146
-
[50]
50 Yasui T, Kaji N, Ogawa R, Hashioka S, Tokeshi M, Horiike Y, Baba Y. Anal. Chem., 2011, 83(17):6635-6640
-
[51]
51 Kazemlou S, Nazemifard N. Microfluid. Nanofluid., 2014, 17(6):993-1002
-
[52]
52 Zalewski D R, Gardeniers H J. Electrophoresis, 2009, 30(24):4187-4194
-
[1]
-
-
-
[1]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[2]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[3]
Chang Liu , Tao Wu , Lijiao Deng , Xuzi Li , Xin Fu , Shuzhen Liao , Wenjie Ma , Guoqiang Zou , Hai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307
-
[4]
Ying Zhang , Fang Ge , Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104
-
[5]
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
-
[6]
Yang Qin , Jiangtian Li , Xuehao Zhang , Kaixuan Wan , Heao Zhang , Feiyang Huang , Limei Wang , Hongxun Wang , Longjie Li , Xianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826
-
[7]
Xiaohong Wen , Mei Yang , Lie Li , Mingmin Huang , Wei Cui , Suping Li , Haiyan Chen , Chen Li , Qiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291
-
[8]
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
-
[9]
Zhongyu Wang , Lijun Wang , Huaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637
-
[10]
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
-
[11]
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
-
[12]
Zhe-Han Yang , Jie Yin , Lei Xin , Yuanfang Li , Yijie Huang , Ruo Yuan , Ying Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558
-
[13]
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
-
[14]
Yanfei Liu , Yaqin Hu , Yifu Tan , Qiwen Chen , Zhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289
-
[15]
Fanghua Zhang , Yuyan Li , Hongyan Zhang , Wendong Liu , Zhe Hao , Mingzheng Shao , Ruizhong Zhang , Xiyan Li , Libing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848
-
[16]
Kun Liu , Yulin Cong , Xiongfeng Luo , Meicun Yao , Zhiyong Xie , Hao Li . Utilizing bivalent aptamers as first DNA agonist to activate RTKs heterodimer of different families. Chinese Chemical Letters, 2025, 36(1): 109839-. doi: 10.1016/j.cclet.2024.109839
-
[17]
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
-
[18]
Gaojian Yang , Zhiyang Li , Rabia Usman , Zhu Chen , Yuan Liu , Song Li , Hui Chen , Yan Deng , Yile Fang , Nongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930
-
[19]
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
-
[20]
Yuqing Liu , Shiling Zhang , Kai Jiang , Shiyue Ding , Limei Xu , Yingqi Liu , Ting Wang , Fenfen Zheng , Weiwei Xiong , Jun-Jie Zhu . Near-infrared light responsive upconversion-DNA nanocapsules for remote-controlled CRISPR-Cas9 genome editing. Chinese Chemical Letters, 2025, 36(5): 110282-. doi: 10.1016/j.cclet.2024.110282
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(325)
- HTML views(19)