Citation: LI Zhe-Yu, SUN Kai, ZHANG Xiao-Yan, LIU Shao-Qin, JIANG Lei, REN Nan-Qi. Advance in Microfluidic Devices for Fractionation of DNA Fragments[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(4): 569-578. doi: 10.11895/j.issn.0253-3820.150589 shu

Advance in Microfluidic Devices for Fractionation of DNA Fragments

  • Corresponding author: SUN Kai, 
  • Received Date: 23 July 2015
    Available Online: 28 September 2015

    Fund Project: 本文系城市水资源与水环境国家重点实验室开放基金(No.2011TS02)资助 (No.2011TS02)

  • Current next generation sequencing works faster and the price is coming down. However, the workflows have numerous manual processes, which contribute to bottleneck and process inefficiency. One of the most time consuming steps is electrophoretic gel-based fractionation of a large number of fragments of interest from the library generation process. In recent years, several instruments were first introduced into the market, and then were tested soon by many famous DNA sequencing centers and platforms. This paper introduces the development of DNA fractionation techniques including capillary electrophoresis and microfluidic devices. Moreover, our argument raises the bottleneck in fractionating DNA fragments on the chips. Finally, we provide insights into the challenges of DNA fractionation and perspectives.
  • 加载中
    1. [1]

      1 Ding L, Stilwell J, Zhang T, Elboudwarej O, Jiang H, Selegue J P, Cooke P A, Gray J W, Chen F F. Nano Lett., 2005, 5(12):2448-2464

    2. [2]

      2 Heidi L. Nature, 2008, doi:10.1038/news. 2008.439

    3. [3]

      3 Collins F S, Morgan M, Patrinos A. Science, 2003, 300(5617):286-290

    4. [4]

      4 Fukumura R, Takahashi H, Saito T, Tsutsumi Y, Fujimori A, Sato S, Tatsumi K, Araki R, Abe M. Nucleic Acids Res., 2003, 31(16):e94-e94

    5. [5]

      5 Kostal V, Katzenmeyer J, Arriaga E A. Anal. Chem., 2008, 80(12):4533-4550

    6. [6]

      6 Kłodzińska E, Buszewski B. Anal. Chem., 2009, 81(1):8-15

    7. [7]

      7 Lin M, Rich R G, Shipley R F, Hafez M J. J. Mol. Diagn., 2007, 9(5):598-603

    8. [8]

      8 Minarik M, Foret F, karger B L. Electrophoresis, 2000, 21(1), 247-254

    9. [9]

      9 Irie T, Oshida T, Hasegawa H, Matsuoka Y, Li T, Oya Y, Tanaka T, Tsujimoto G, Kambara H. Electrophoresis, 2000, 21(2):367-374

    10. [10]

      10 Huge B J, Flaherty R J, Dada OO, Dovichi N J. Talanta, 2014, 130(1):288-293

    11. [11]

      11 Vannatta M W, Whitmore C D, Dovichi N J. Electrophoresis, 2009, 30(23):4071-4074

    12. [12]

      12 Minarik M, Kleparnik K, Gilar M, Foret F, Miller A W, Sosic Z, Karger B L. Electrophoresis, 2002, 23(1):35-42

    13. [13]

      13 Lim K S, Naviaux R K, Wong S, Haas R H. J. Mol. Diagn., 2008, 10(1):102-108

    14. [14]

      14 Mitchell P. Nat. Biotechnol., 2001, 19:717-721

    15. [15]

      15 Auroux P A, Iossifidis D, Reyes D R, Manz A. Anal. Chem., 2002, 74(12):2637-2652

    16. [16]

      16 Reyes D R, Iossifidis D, Auroux P A, Manz A. Anal. Chem., 2002, 74(12):2623-2636

    17. [17]

      17 Harrison D J, Fluri K, Seiler K, Fan Z, Effenhauser C S, Manz A. Science, 1993, 261(5123):895-897

    18. [18]

      18 Woolley A T, Mathies R A. Anal. Chem., 1995, 67(20):3676-3680

    19. [19]

      19 Shi Y, Anderson R C. Electrophoresis, 2003, 24(19-20):3371-3377

    20. [20]

      20 Yi LL, Xu X Q, Lin X X, Li H F, Ma Y, Lin J M. Analyst, 2014, 139(13):3330-3335

    21. [21]

      21 Deng Y, Yi LL, Lin X X, Lin L, Li H F, Lin J M. Talanta, 2015, 144:136-144

    22. [22]

      22 Footz T, Wunsam S, Kulak S, Crabtree H J, Glerum D M, Backhouse C J. Electrophoresis, 2001, 22(18):3868-3875

    23. [23]

      23 Effenhauser C S, Manz A, Widmer H M. Anal. Chem., 1993, 65(19):2637-2642

    24. [24]

      24 Effenhauser C S, Manz A, Widmer H M. Anal. Chem., 1995, 67(13):2284-2287

    25. [25]

      25 Khandurina J, Chovan T, Guttman A. Anal. Chem., 2002, 74(7):1737-1740

    26. [26]

      26 Khandurina J, Guttman A. J. Chromatogr. A, 2002, 979(1-2):105-113

    27. [27]

      27 Li G, Ran R, Zhao J, Xu Y. Electrophoresis, 2007, 28(24):4661-4667

    28. [28]

      28 Lin R, Burke D T, Bruns M A. J. Chromatogr. A, 2003, 1010(2):255-268

    29. [29]

      29 Lin R, Burke D T, Bruns M A. Anal. Chem., 2005, 77(14):4338-4347

    30. [30]

      30 Kuo T, Cannon D M, Chen Y, Tulock J J, Shannon M A, Sweedler J V, Bohn P W. Anal. Chem., 2003, 75(8):1861-1867

    31. [31]

      31 Tulock J J, Shannon M A, Bohn P W, Sweedler J V. Anal. Chem., 2004, 76(21):6419-6425

    32. [32]

      32 Bharadwaj R, Santiago J G, Mohammadi B. Electrophoresis, 2002, 23(16):2729-2744

    33. [33]

      33 Dittrich P S, Schwille P. Anal. Chem., 2003, 75(21):5767-5774

    34. [34]

      34 Fu L M, Yang R J, Lee G B. Anal. Chem., 2003, 75(8):1905-1910

    35. [35]

      35 Sun K, Li Z, Ueno K, Juodkazis S, Noji S, Misawa H. Electrophoresis, 2007, 28(10):1572-1578

    36. [36]

      36 Sun K, Suzuki N, Li Z Y, Araki R, Ueno K, Juodkazis S, Abe M, Noji S, Misawa H. Electrophoresis, 2008, 29(19):3959-3963

    37. [37]

      37 Shen Z, Liu X J, Long Z C, Liu D Y, Ye N N, Qin J H, Dai Z P, Lin B C. Electrophoresis, 2006, 27(5-6):1084-1092

    38. [38]

      38 Dang F, Shinohara S,Tabata O, Yamaoka Y, Kurokawa M, Shinohara Y, Ishikawa M, Baba Y. Lab Chip, 2005, 5(4):472-478

    39. [39]

      39 Dang F, Tabata O, Kurokawa M, Ewis A A, Zhang L, Yamaoka Y, Shinohara S, Shinohara Y, Ishikawa M, Baba Y. Anal. Chem., 2005, 77(7):2140-2146

    40. [40]

      40 Inoue A, Ito T, Makino K, Hosokawa K, Maeda M. Anal. Chem., 2007, 79(5):2168-2173

    41. [41]

      41 Li Z Y, Sun K, Sunayama M, Araki R, Ueno K, Abe M, Misawa H. J. Chromatogr. A, 2011, 1218(7):997-1003

    42. [42]

      42 Wang Z, Justine T, Jemere A B, Harrison D J. Electrophoresis, 2010, 31(15):2575-2583

    43. [43]

      43 Hua Y, Jemere A B, Dragoljic J, Harrison D J. Lab Chip, 2013, 13(13):2651-2659

    44. [44]

      44 Baker C A, Roper M G. J. Chromatogr. A, 2010, 1217(28):4743-4748

    45. [45]

      45 Sun K, Suzuki N, Li Z Y, Araki R, Ueno K, Juodkazis S, Abe M, Noji S, Misawa H. Electrophoresis, 2009, 30(24):4277-4284

    46. [46]

      46 Li Z Y, Sun K, Sunayama M, Araki R, Ueno K, Abe M, Misawa H. Electrophoresis, 2011, 32(23):3392-3398

    47. [47]

      47 Sun K, Li Z Y, You S J, Zhang X Y, Ren N Q. Microfluid. Nanofluid., 2015, 19(2):291-298

    48. [48]

      48 Huang R L, Jonas T O, Jessica K J, James S C, Robert A H, Cox E C. Nat. Biotech., 2002, 20:1048-1051

    49. [49]

      49 Hattori W, Someya H, Baba M, Kawaura H. J. Chromatogr. A, 2004, 1051(1-2):141-146

    50. [50]

      50 Yasui T, Kaji N, Ogawa R, Hashioka S, Tokeshi M, Horiike Y, Baba Y. Anal. Chem., 2011, 83(17):6635-6640

    51. [51]

      51 Kazemlou S, Nazemifard N. Microfluid. Nanofluid., 2014, 17(6):993-1002

    52. [52]

      52 Zalewski D R, Gardeniers H J. Electrophoresis, 2009, 30(24):4187-4194

  • 加载中
    1. [1]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    2. [2]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    3. [3]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    4. [4]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    5. [5]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    6. [6]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    7. [7]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    8. [8]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    9. [9]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    10. [10]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    11. [11]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    12. [12]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    13. [13]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    14. [14]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    15. [15]

      Fanghua ZhangYuyan LiHongyan ZhangWendong LiuZhe HaoMingzheng ShaoRuizhong ZhangXiyan LiLibing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848

    16. [16]

      Kun LiuYulin CongXiongfeng LuoMeicun YaoZhiyong XieHao Li . Utilizing bivalent aptamers as first DNA agonist to activate RTKs heterodimer of different families. Chinese Chemical Letters, 2025, 36(1): 109839-. doi: 10.1016/j.cclet.2024.109839

    17. [17]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    18. [18]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    19. [19]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    20. [20]

      Yuqing LiuShiling ZhangKai JiangShiyue DingLimei XuYingqi LiuTing WangFenfen ZhengWeiwei XiongJun-Jie Zhu . Near-infrared light responsive upconversion-DNA nanocapsules for remote-controlled CRISPR-Cas9 genome editing. Chinese Chemical Letters, 2025, 36(5): 110282-. doi: 10.1016/j.cclet.2024.110282

Metrics
  • PDF Downloads(1)
  • Abstract views(325)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return