Citation: XIA Chang, HAI Xin, CHEN Shuai, CHEN Xu-Wei, WANG Jian-Hua. Preparation of Graphene Quantum Dots/Ag Nanoparticles Nanocomposites for Colorimetric Detection of H2O2 and Glucose[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(1): 41-48. doi: 10.11895/j.issn.0253-3820.150568 shu

Preparation of Graphene Quantum Dots/Ag Nanoparticles Nanocomposites for Colorimetric Detection of H2O2 and Glucose

  • Corresponding author: CHEN Xu-Wei,  WANG Jian-Hua, 
  • Received Date: 16 July 2015
    Available Online: 13 August 2015

    Fund Project: 本文系国家自然科学基金项目(Nos.21275027,21235001,21475017)资助 (Nos.21275027,21235001,21475017)

  • Graphene quantum dots/Ag nanoparticles nanocomposite (GQDs/AgNPs) was prepared via in-situ growth of AgNPs on the surface of GQDs, in which GQDs served as both reducing agent and stabilizer. The as-prepared nanocomposites were mono-dispersed with an average diameter of less than 30 nm. The obtained GQDs@AgNPs nanocomposites exhibited excellent intrinsic peroxidese-like activity, which could catalyze the oxidization of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce a colour product. Steady-state kinetic assays showed that the catalytic activity of GQDs/AgNPs towards H2O2 fitted well with typical Michaelis-Menten kinetic model, followed by the ping-pong mechanism. Compared with the horseradish peroxidase (HRP), GQDs/AgNPs showed higher affinity towards TMB and H2O2 substrate. Based on the intrinsic peroxidese-like activity of GQDs/AgNPs nanocomposites and the production of H2O2 after the oxidation of glucose, a colorimetric method was developed for the detection of H2O2 and glucose, along with detection limit of 0.18 μmol/L and 1.6 μmol/L, respectively. The present method was applied to the detection of glucose in human serum, and the obtained results agreed with that obtained by reference method.
  • 加载中
    1. [1]

      1 Wang Y, Dai C, Yan X P. Chem. Commun., 2014,50(92):14341-14344

    2. [2]

      2 Jeon E K, Seo E, Lee E, Lee W, Um M K, Kim B S. Chem. Commun., 2013,49(33):3392-3394

    3. [3]

      3 Zhou Y Z, Cheng X N, Yang J, Zhao N, Ma S B, Li D, Zhong T. RSC Adv., 2013,3(45):23236-23241

    4. [4]

      4 Wu M L, Lu D B, Zhao Y, Ju T Z. Micro Nano Lett., 2013,8(2):82-85

    5. [5]

      5 Tang X Z, Cao Z W, Zhang H B, Liu J, Yu Z Z. Chem. Commun., 2011, 47(11):3084-3086

    6. [6]

      6 Yang L, Luo W, Cheng G Z. ACS Appl. Mater. Interfaces, 2013,5(16):8231-8240

    7. [7]

      7 Sun Z Y, Dong N N, Wang K P. K nig D, Nagaiah T C, Sánchez M D, Ludwig A, Cheng X, Schuhmann W G, Wang J, Muhler M. Carbon, 2013,62:182-192

    8. [8]

      8 WU Ling, CAO Zhong, SONG Tian-Ming, SONG Cheng, XIE Jing-Lei, HE Jing-Lin, XIAO Zhong-Liang. Chinese J. Anal. Chem., 2014,42(11):1656-1660 吴 玲, 曹 忠, 宋天铭, 宋 铖, 谢晶磊, 何婧琳, 肖忠良.分析化学,2014,42(11):1656-1660

    9. [9]

      9 Zhang Y M, Yuan X, Wang Y, Chen Y. J. Mater. Chem., 2012, 22(15):7245-7251

    10. [10]

      10 WANG Lu, ZANG Xiao-Huan, WANG Chun, WANG Zhi. Chinese J. Anal. Chem., 2014,42(1):136-144 王 璐, 臧晓欢, 王 春, 王 志.分析化学,2014,42(1):136-144

    11. [11]

      11 Li L L, Wu G H,Yang G H, Peng J, Zhao J W, Zhu J J. Nanoscale, 2013,5(10):4015-4039

    12. [12]

      12 Yan X, Li B, Li L S. Accounts Chem. Res., 2013, 46(10):2254-2262

    13. [13]

      13 Lin L P, Rong M C, Luo F, Chen D M, Wang Y R, Chen X. TRAC-Trend Anal. Chem., 2014,54:83-102

    14. [14]

      14 Hummers Jr W S, Offeman R E. J. Am. Chem. Soc., 1958,80(6):1339-1339

    15. [15]

      15 Wei Z Q, Wang D, Kim S, Hu Y, Yakes M K, Laracuente A R, Dai Z, Marder S R, Berger C, King W P, Heer W A, Sheehan P E, Riedo E. Science, 2010,328(5984):1373-1376

    16. [16]

      16 YU Mei, LIU Peng-Rui, SUN Yu-Jing, LIU Jian-Hua, AN Jun-Wei, LI Song-Mei. Chinese J. Inorg. Mater., 2012,27(1):89-94 于 美, 刘鹏瑞, 孙玉静, 刘建华, 安军伟, 李松梅.无机材料学报,2012,27(1):89-94

    17. [17]

      17 Ran X, Sun H, Pu F, Ren J-S, Qu X-G. Chem. Commun., 2013,49(11):1079-1081

    18. [18]

      18 Liu M, Zhao H M, Chen S, Yu H T, Quan X. ACS Nano, 2012,3(6):3142-3151

    19. [19]

      19 Gao L Z, Zhuang J, Nie L, Zhang J B, Zhang Y, Gu N, Wang T H, Feng J, Yang D L, Perrett S. Nat. Nanotechnol., 2007,2(9):577-583

    20. [20]

      20 XIE Jian-Xin. Chracteristics of Nanomaterials as Peroxidase Mimetics and Their Analytical Applications, Southeast University, Chongqing, 2012 谢建新.纳米材料过氧化物模拟酶特性及其应用研究, 重庆:西南大学,2012

    21. [21]

      21 Eisenmesser E Z, Bosco D A, Akke M, Kern D. Science, 2002,295(5559):1520-1523

    22. [22]

      22 Lin L P, Song X H, Chen Y Y, Rong M C, Zhao T T, Wang Y R, Jiang Y Q, Chen X. Anal. Chim. Acta, 2015,869:89-95

    23. [23]

      23 Xie J X, Cao H Y, Jiang H, Chen Y J, Shi W B, Zheng H Z, Huang Y M. Anal. Chim. Acta, 2013,796:92-100

    24. [24]

      24 Dong Y L, Zhang H G, Rahman Z U, Su L, Chen X J, Hu J, Chen X G. Nanoscale, 2012,4(13):3969-3976

    25. [25]

      25 Hao J H, Zhang Z, Yang W S, Lu B P, Ke X, Zhang B L, Tang J L. J. Mater. Chem. A, 2013,1:4352-4357

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    20. [20]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(33)
  • Abstract views(1730)
  • HTML views(241)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return