Citation: ZHOU Lu, CHENG Hui, WANG Jin-E, PEI Ren-Jun. G-Quadruplex DNAzyme Biosensor for Quantitative Detection of T4 Polynucleotide Kinase Activity by Using Split-to-Intact G-Quadruplex DNAzyme Conversion[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(1): 13-18. doi: 10.11895/j.issn.0253-3820.150480 shu

G-Quadruplex DNAzyme Biosensor for Quantitative Detection of T4 Polynucleotide Kinase Activity by Using Split-to-Intact G-Quadruplex DNAzyme Conversion

  • Corresponding author: PEI Ren-Jun, 
  • Received Date: 11 June 2015
    Available Online: 24 August 2015

    Fund Project: 本文系国家自然科学基金(Nos.31301495,21275156,21305154)资助 (Nos.31301495,21275156,21305154)

  • A biosensor for detection of T4 polynucleotide kinase (PNK) activity was fabricated by using a split-to-intact DNAzyme conversion strategy. G-quadrplex-forming G-rich sequence PS5.M was chosen as a model DNAzyme and splitted into two short parts of S1OH and S2OH, which both had hydroxyl groups at 3' and 5'terminals, and could hybridize to another sequence, helper DNA (SH), to form a duplex structure. In the presence of T4 PNK, 5'-end of S2OH was phophorylated to obtain S2P. Then S1OH and S2P could be linked by T4 DNA ligase to intact PS5.M. In the presence of exonuclease Ⅲ (Exo Ⅲ), SH chain in the duplex of PS5.M-SH could be cleaved into nucleotides, releasing free PS5.M. The released PS5.M could form catalytically active G-quadruplex DNAzyme upon binding hemin in the presence of K+, which could catalyze the oxidation of 2,2'-azino bis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) by H2O2. Quantitative detection of T4 PNK activity could be achieved by measuring the maximal absorbance of product at 418 nm. The absorbance of the sensing system at 418 nm exhibited a linear relationship with T4 PNK activity in the range of 0.02-0.3 U/mL with a detection limit of 0.014 U/mL (S/N=3). The biosensor was also applied to the determination of PNK activity in Hela cell and HEK 293 cell, and good recoveries of 95.6%-105.7% were obtained at three spiked levels.
  • 加载中
    1. [1]

      1 Richardson C C. Proc. Natl. Acad. Sci. USA, 1965,54:158-165

    2. [2]

      2 Wang L K, Shuman S. Nucleic Acids Res., 2002,30:1073-1080

    3. [3]

      3 Cameron V, Uhlenbeck O C. Biochemistry, 1977,16:5120-5126

    4. [4]

      4 Wang L K, Shuman S. J. Biol. Chem., 2001,276, 26868-26874

    5. [5]

      5 Tang Z, Wang K, Tan W, Ma C, Li J, Liu L, Guo Q, Meng X. Nucleic Acids Res., 2005,33:e97-e97

    6. [6]

      6 Song C, Zhao M. Anal. Chem., 2009,81:1383-1388

    7. [7]

      7 Lin L, Liu Y, Zhao X, Li J. Anal. Chem., 2011,83:8396-8402

    8. [8]

      8 Huang Y, Chen J, Shi M, Zhao S, Chen Z F, Liang H. J. Mater. Chem. B, 2013,1:2018-2021

    9. [9]

      9 Hou T, Wang X, Liu X, Pan C, Li F. Sens. Actuators B, 2014,202:588-593

    10. [10]

      10 Robertson D L, Joyce G F. Nature, 1990,344:467-468

    11. [11]

      11 Breaker R R, Joyce G F. Chem. Biol., 1994,1:223-229

    12. [12]

      12 Cuenoud B, Szostak J W. Nature, 1995,375:611-614

    13. [13]

      13 SONG Lu-Na, ZHANG Yong-Hua, BO Hong-Yan, GAO Qiang. Chinese J. Anal. Chem., 2015,43(9):1402-1407 宋璐娜, 张永花, 薄红艳, 高 强.分析化学,2015,43(9):1402-1407

    14. [14]

      14 DUAN Na-Na, WANG Na, YANG Wei, KONG De-Ming. Chinese J. Anal. Chem., 2014,42(10):1414-1420 段娜娜, 王 娜, 杨 薇, 孔德明.分析化学,2014,42(10):1414-1420

    15. [15]

      15 Huppert J L. FEBS J., 2010,277(17):3452-3458

    16. [16]

      16 Lipps H J, Rhodes D. Trends Cell Biol., 2009,19(8):414-422

    17. [17]

      17 Jiang H, Kong D, Shen H X. Biosens. Bioelectron, 2014,55:133-138

    18. [18]

      18 Jiang C, Yan C, Jiang J. Anal. Chim. Acta, 2013,766:88-93

    19. [19]

      19 Li T, Wang E, Dong S. Anal. Chem., 2010,82(4):1515-1520

    20. [20]

      20 Aleman-Garcia M A, Orbach R, Willner I. Chem-Eur J., 2014,20(19):5619-5624

    21. [21]

      21 Xiao Y, Pavlov V, Niazov T, Dishon A, Kotler M, Willner I. J. Am. Chem. Soc., 2004,126(24):7430-7431

    22. [22]

      22 Travascio P, Li Y, Sen D. Chem. Biol., 1998,5:505-517

    23. [23]

      23 Nagatoishi S, Tanaka Y, Tsumoto K. Biochem. Biophys. Res. Commun, 2007,352:812-817

    24. [24]

      24 He H Z, Leung K H, Wang W, Chan D S, Leung C H, Ma D L. Chem. Commun, 2014,50:5313-5315

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    3. [3]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    4. [4]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    5. [5]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    6. [6]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    7. [7]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    8. [8]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    9. [9]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    10. [10]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    16. [16]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    17. [17]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    18. [18]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    19. [19]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    20. [20]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

Metrics
  • PDF Downloads(0)
  • Abstract views(434)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return