Citation: LI Yue-Sheng, SONG Zhi-Yong, QIN Jiang-Tao, HUANG Hai-Tao, HAN Yan. Study on Photocatalytic Degradation of Core/Shell CdSe/ZnS Quantum Dots with Nano-TiO2 by Fluorescent Spectrometric Methods[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(1): 61-67. doi: 10.11895/j.issn.0253-3820.150450 shu

Study on Photocatalytic Degradation of Core/Shell CdSe/ZnS Quantum Dots with Nano-TiO2 by Fluorescent Spectrometric Methods

  • Received Date: 29 May 2015
    Available Online: 1 September 2015

  • The experiment of photocatalytic degradation on fluorescent substance core/shell CdSe/ZnS quantum dots by Nano-TiO2 (P25) under visible light-induced was investigated. The degradation rate was analyzed and evaluated by determining the absorbance of degradation substance to determine the degree of degradation and efficiency. The results of photocatalytic experiment showed a good linear relationship between fluorescence quenching degree (F/F0) and reaction time (t) on fluorescent substance of CdSe/ZnS quantum dot, according to the photocatalytic degradation kinetics equation of CdSe/ZnS quantum dots. The consistency of experimental results was also confirmed with fluorescence spectroscopy and conventional spectrophotometry. Based on this, a new sensitive method was established for efficient determination of photocatalytic degradation fluorescent substance. The present method was helpful to analyze the photocatalytic degradation mechanism of fluorescent substance and provided a theoretical basis and reference to study the photocatalytic degradation on other fluorescent substances.
  • 加载中
    1. [1]

      1 Zhang Z Z, Wang X X, Long J L, Gu Q, Ding Z X, Fu X Z. J. Catal., 2010,276(2):201

    2. [2]

      2 Joanna R, Tomasz G, Janusz W. Appl. Surf. Sci., 2014,307:333-345

    3. [3]

      3 JIN Min, HUANG Yu-Hua, LUO Ji-Xiang. Spectroscopy and Spectral Analysis, 2015,35(2):420-423 晋 敏, 黄玉华, 罗吉祥.光谱学与光谱分析, 2015,35(2):420-423

    4. [4]

      4 Susann N, Petra P, Christian W, Philipp W, Bastian M. Catal. Today, 2014,230:97-103

    5. [5]

      5 Jiu J T, Isoda S, Wang F M. J. Phys. Chem. B, 2006,110(5):2087-2092

    6. [6]

      6 Dubertret B, Skourides P, Norris D J, Noireaux V, Brivanlou A H, Libchaber A. Science, 2002,298(5602):1759-1762

    7. [7]

      7 Hoshino A, Fujioka K, Oku T, Suga M, Sasaki Y F, Ohta T, Yasuhara M, Suzuki K, Yamamoto K. Nano Lett., 2004,4(11):2163-2169

    8. [8]

      8 Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier A M, Gaub H E, St lzle S, Fertig N, Parak W J. Nano Lett., 2005,5(2):331-338

    9. [9]

      9 Green M, Howman E. Chem. Commun., 2005,1:121-123

    10. [10]

      10 LI Yue-Sheng, DU Ji-Fu, SUN Shao-Fa. Spectro. Spectr. Anal., 2014,34(4):1040-1043 李月生, 杜纪富, 孙绍发.光谱学与光谱分析,2014,34(4):1040-1043

    11. [11]

      11 Li Y S, Zhang Y, Sun S F, Liu Y. J. Photochem. Photobiol. B:Biology, 2013,128:12-19

    12. [12]

      12 Li Y S, Sun S F, Liu Y. Acta Chim. Sinica, 2013,71(12):1656-1662

    13. [13]

      13 Lovrić J, Cho S J, Winnik F M, Maysinger D. Chem. Biolo., 2005,12(11):1227-1234

    14. [14]

      14 Lovrić J, Bazzi H S, Cuie Y, Genevieve R A, Winnik M., Maysinger D. J. Molecu. Model., 2005,83(5):377-385

    15. [15]

      15 YE Mei-Ying, LI Bao-Xing, YE Rong-Min, LIU Jin-Hua. Chinese J. Anal. Chem., 2010,38(5):643-647 叶美英, 李宝兴, 叶荣民, 刘金华.分析化学,2010,38(5):643-647

    16. [16]

      16 Saif M, Aboul-Fotouh S M K, El-Molla S A, Ibrahim M M, Ismail L F M. Molecu. Biomolecu. Spect., 2014,128:153-162

    17. [17]

      17 ZHANG Hong-Man, CHEN Guo-song, DUAN He-Jun, YANG Zhu-Hong, LU Xiao-Hua. Chinese J. Anal. Chem., 2005,33(10):1417-1420 张红漫, 陈国松, 段鹤君, 杨祝红, 陆小华.分析化学,2005,33(10):1417-1420

    18. [18]

      18 JIA Chen-Zhong, WAN Yan-Xin, ZHANG Cai-Xiang. Chinese J. Anal. Chem., 2012,40(11):1710-1746 贾陈忠, 王焰新, 张彩香.分析化学,2012,40(11):1710-1746

    19. [19]

      19 Liu Y, Wang Y T, Li X G. J. Hazard. Mater., 2008,150(2):153-157

    20. [20]

      20 Liu Y, Li Q, Zhang J T, Sun W Z, Gao S A, Shang J K. Chem. Eng. J., 2014,249:63-71

    21. [21]

      21 Qu L H, Peng X G. J. Am. Chem. Soc., 2002,124(9):2049-2055

    22. [22]

      22 Xie H Y, Liang J G, Liu Y, Zhang Z L, Pang D W, He Z K, Lu Z X, Huang W H. J. Nanosci. Nanotechnol., 2005,5(6):880-886

    23. [23]

      23 Chan W C W, Nie S M. Science, 1998,281(5385):2016-2018

    24. [24]

      24 Schmelz O, Mews A, Basché T, Herrmann A, Müllen K. Langmuir, 2001,17(7):2861-2865

  • 加载中
    1. [1]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    2. [2]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(10)
  • Abstract views(598)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return