Citation: WANG Xue, CHENG Xiao-Min. Study on Aggregation Behavior of Hydroxypropyl Chitosan in Aqueous Solution[J]. Chinese Journal of Analytical Chemistry, ;2015, 43(12): 1864-1869. doi: 10.11895/j.issn.0253-3820.150416 shu

Study on Aggregation Behavior of Hydroxypropyl Chitosan in Aqueous Solution

  • Corresponding author: CHENG Xiao-Min, 
  • Received Date: 20 May 2015
    Available Online: 10 August 2015

    Fund Project:

  • Hydroxypropyl chitosan(HPCS) with various degrees of deacetylation(DD 98%-55%) was successfully prepared by the reaction of pre-basified N-acetylchitosan and propylene epoxide with ispropanol as solvent. The acetylations of chitosan at N-position were carried out by changing the dosage of acetic anhydride in acetic acid-water-methanol solution. The hydroxypropyl substitution mainly occurred at both C3-OH and C6-OH groups, which was approved by FTIR and 1H-NMR. The aggregation behavior of HPCS samples was carefully investigated by gel permeation chromatography with multi-angle light scattering(GPC-MALS), dynamic light scattering(DLS), fluorescence spectrometry and atomic force microscope(AFM). The results indicated that HPCS single chains and aggregates were coexistence in aqueous solution. With the increasing content of N-acetyl of HPCS, the apparent aggregation number increased. The critical aggregation concentration(CAC) from DLS were 1.09 mg/mL for HPCS with DD 98% and 1.67 mg/mL for HPCS with DD 75%, which were consistent with the results of pyrene probe fluoresce spectrometry. The content of N-acetyl groups had an effect on the CAC values. Two types of HPCS(DD 55%) aggregates occurred in aqueous solution. The majority was smaller aggregates with lower than 13 nm in height after film pilling and 70-200 nm in length, while the minority(about 20%) was comparatively larger aggregates with about 13-31.4 nm in height after film pilling and 200-610 nm in length.
  • 加载中
    1. [1]

      1 Sarvaiya J, Agrawal Y K. Int. J. Biol. Macromol., 2015, 72:454-465

    2. [2]

      2 CUI Hong-Min, CHEN Ji, YANG Hua-Ling, WANG Wei, LIU Yu, DENG Yue-Feng, ZHANG Dong-Li. Chinese J. Anal. Chem., 2014, 42(3):446-451 崔红敏, 陈 继, 杨华玲, 王 威, 刘 郁, 邓岳锋, 张冬丽. 分析化学, 2014, 42(3):446-451

    3. [3]

      3 Friedman M, Juneja V K. J. Food Protect, 2010, 73(9):1737-1761

    4. [4]

      4 HUANG Zhong-Hua, SUN Xiu-Yun, LI Yan, GE Wei, WANG Jun-De. Spectroscopy and Spectral Analysis, 2005, 25(5):698-700 黄中华, 孙秀云, 李 燕, 葛 玮, 王俊德. 光谱学与光谱分析, 2005, 25(5):698-700

    5. [5]

      5 Wu C, Zhou S Q, Wang W. Biopolymers, 1995, 35(4):385-392

    6. [6]

      6 Yanagisawa M, Kato Y, Yoshida Y, Isoogai A. Carbohyd. Polym., 2006, 66(2):192-198

    7. [7]

      7 Sajomsang W, Tantayanon S, Tangpasuthadol V, Daly W H. Carbohyd. Polym., 2008, 72(4):740-750

    8. [8]

      8 Faizuloev E, Marova A, Nikonova A, Volkova I, Gorshkova M, Izumrudov V. Carbohyd. Polym., 2012, 89(4):1088-1094

    9. [9]

      9 Fernanda R D A, Sérgio P C F. Carbohyd. Polym., 2009, 75(2):214-221

    10. [10]

      10 Peng Y F, Han B Q, Liu W S, Xu 1X J. Carbohyd. Res., 2005, 340(11):1846-1851

    11. [11]

      11 Wang Z H, Yan Y B, Jiang Y Y, Li W, Hu X C, Fu B Q, Xia C F, Qin C Q. Int. J. Biol. Macromol., 2014, 64:25-29

    12. [12]

      12 Yiang Y, Liu W S, Han B Q, Yang C Z, Ma Q, Song F L, Bi Q Q. Colloid Surface B, 2011, 82(1):1-7

    13. [13]

      13 Wang S L, Liu W S, Han B Q, Yang L L. Appl. Surf. Sci., 2009, 255(20):8701-8705

    14. [14]

      14 Wan Y, Creber K A M, Peppley B, Bui V T. J. Polym. Sci. Phys. B, 2004, 42(8):1379-1397

    15. [15]

      15 Zhang C, Ping Q N, Ding Y. J. Appl. Polym. Sci., 2005, 97(5):2161-2167

    16. [16]

      16 Fan L H, Li M J, Gong Y G, Peng K, Xie W G. J. Appl. Polym. Sci., 2012, 125(2):829-835

    17. [17]

      17 Shi M,Shoichet M S. J. Biomat Sci-Polym. E, 2008, 19(9):1143-1157

    18. [18]

      18 Kwon G S, Forrest M L. Drug Develop. Res., 2006, 67(1):15-22

    19. [19]

      19 LIN Bao-Feng, LI Yan-Ming, ZHOU Yu-Lian, DU Yu-Min. Acta Polymerica Sinica, 2011, 3(3):267-273 林宝凤, 黎演明, 周妤莲, 杜予民. 高分子学报, 2011, 3(3):267-273

    20. [20]

      20 Schatz C, Viton C, Delair T, Pichot C, Domard A. Biomacromolecules, 2003, 4(3):641-648

    21. [21]

      21 Fee M, Errington N, Jumel K, Illum L, Smith A, Harding S E. Eur. Biophys. J., 2003, 32(5):457-464

    22. [22]

      22 Winnik F M, Winnik M A,Tazuke S. J. Phys. Chem., 1987, 91(3):594-597

    23. [23]

      23 Philippova O E, Volkov E V, Sitnikova N L, Khokhlov A R, Desbrieres J, Rinaudo M. Evgenii V V, Natalia L S, Alexei R K. Biomacromolecules, 2001, 2(2):483-490

  • 加载中
    1. [1]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    2. [2]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    3. [3]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    4. [4]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    5. [5]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    6. [6]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    7. [7]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    8. [8]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    9. [9]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    10. [10]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    11. [11]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    12. [12]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    13. [13]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    14. [14]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    15. [15]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    16. [16]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    19. [19]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    20. [20]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

Metrics
  • PDF Downloads(0)
  • Abstract views(400)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return