Citation: LIAO Xiao-Qing, WANG Hui-Ying, LI Zai-Jun. Fluorescence “on-off” Response of Bovine Serum Albumin-Cu System Towards Hydrogen Peroxide and L-Cysteine and Their Analysis Applications[J]. Chinese Journal of Analytical Chemistry, ;2015, 43(12): 1820-1828. doi: 10.11895/j.issn.0253-3820.150413 shu

Fluorescence “on-off” Response of Bovine Serum Albumin-Cu System Towards Hydrogen Peroxide and L-Cysteine and Their Analysis Applications

  • Corresponding author: LI Zai-Jun, 
  • Received Date: 20 May 2015
    Available Online: 3 July 2015

    Fund Project: 本文系国家自然科学基金资助项目(No.21176101) (No.21176101)

  • The synthesis and application of copper nanoclusters(CuNCs) as optical probe have attracted a great attention. The study shows that bovine serum albumin(BSA) CAN react with copper ions(Cu2+) in a base medium to form stable BSA-Cu complex. In the solution, the introduction of hydrogen peroxide can remarkably accelerate the formation of CuNCs. At the same time, the fluorescence intensity rapidly increases. Based on the fluorescence "light-on" response of BSA-Cu system, a kinetics method was developed for the fluorescent detection of hydrogen peroxide. The fluorescence intensity of BSA-Cu linearly increased with the increase of hydrogen peroxide in the range from 1.0×10-6 mol/L to 1.5×10-3 mol/L with the detection limit of 3.1×10-7 mol/L(S/N=3). After that, the collected BSA-Cu solution was placed until its fluorescence intensity increases to the maximum value, in which the Cu2+ ions were fully changed into CuNCs. The experiment demonstrated that the addition of L-cysteine into the solution led to an obvious fluorescence quenching. Based on the fluorescence "light-off" response of BSA-Cu system towards L-cysteine, an analytical method was established for the fluorescent determination of L-cysteine. The fluorescence intensity linearly reduced with the increase of L-cysteine concentration in the range of 2.0×10-4-1.0×10-2 mol/L with the detection limit of 5.7×10-5 mol/L(S/N=3). Finally, the resulted BSA-Cu waste was treated by high temperature ashing and then dissolving with sulfuric acid, in which the CuNCs were turned into Cu2+ ions. The resulting Cu2+ solution continued to be used for the detection of H2O2 and L-cysteine in the next cycle. In the work, the cycle detection of hydrogen peroxide and L-cysteine and reuse of copper could be achieved using the conversion between Cu2+ and copper nanoclusters. The method provides the characteristics of high sensitivity, low cost and environment-friendly, and can be widely used for routine analysis of hydrogen peroxide and L-cysteine.
  • 加载中
    1. [1]

      1 Lin Y H, Ren J S, Qu X G. Acc. Chem. Res., 2014, 47(4):1097-1105

    2. [2]

      2 Díez I, Ras R H A. Springer Ser. Fluoresc., 2010, 9:307-332

    3. [3]

      3 Li S Y, Wei S, Gao Z Q. Chem. Soc. Rev., 2015, 44(1):362-381

    4. [4]

      4 Yu J, Zhang X J, Hao X J, Zhang X H, Zhou M J, Lee C S, Chen X F. Biomaterials, 2014, 35(10):3356-3364

    5. [5]

      5 Shang L, Dong S J, Nienhaus G U. Nano Today, 2011, 6(4):401-418

    6. [6]

      6 Wu X F, Li R Y, Li Z J, Liu J K, Wang G L, Gu Z G. RSC Adv., 2014, 4(48):24978-24985

    7. [7]

      7 Li J J, Wang W J, Sun D F, Chen J N, Zhang P H, Zhang J R, Min Q H, Zhu J J. Chem. Sci., 2013, 4(9):3514-3521

    8. [8]

      8 Ling Y, Zhang N, Qu F. Spectrochim. Acta, Part A, 2014, 118:315-320

    9. [9]

      9 Zhao X J, Huang C Z. New J. Chem., 2014, 38(8):3673-3677

    10. [10]

      10 Yang X M, Feng Y J, Zhu S S, Luo Y W, Zhuo Y, Dou Y. Anal. Chim. Acta, 2014, 847:49-54

    11. [11]

      11 Jia X F, Yang X, Li J, Li D Y, Wang E K. Chem. Commun., 2014, 50(2):237-239

    12. [12]

      12 Jia X F, Li J, Wang E K. Small, 2013, 9(22):3873-3879

    13. [13]

      13 Li W H, Li W, Hu Y F, Xia Y L, Shen Q P, Nie Z, Huang Y, Yao S Z. Biosens. Bioelectron., 2013, 47:345-349

    14. [14]

      14 Jia X F, Li J, Han L, Ren J T, Yang X, Wang E K. ACS Nano, 2012, 6(4):3311-3317

    15. [15]

      15 Hu L Z, Yuan Y L, Zhang L, Zhao J M, Saadat M, Xu G B. Anal. Chim. Acta, 2013, 762:83-86

    16. [16]

      16 Wu X F, Li R Y, Li Z J. RSC Adv., 2014, 4(20):9935-9941

    17. [17]

      17 Rama G, Amaresh K S, Siddhartha S G, Anumita P, Arun C. ACS Applied Materials & Interfaces, 2014, 6(6):3822-3828

    18. [18]

      18 Wang W, Leng F, Zhan L, Chang Y, Yang X X, Lan J, Huang C Z. Analyst, 2014, 139(12):2990-2993

    19. [19]

      19 Zhao T, He X W, Li W Y, Zhang Y K. J. Mater. Chem. B, 2015, 3(11):2388-2394

    20. [20]

      20 Xu S J, Chen F N, Deng M, Sui Y Y. RSC Adv., 2014, 4(30):15664-15670

    21. [21]

      21 Wang C, Wang C X, Xu L, Cheng H, Lin Q, Zhang C. Nanoscale, 2014, 6(3):1775-1781

    22. [22]

      22 Drochioiu G, Damocb N E, Przybylski M. Talanta, 2006, 69(3):556-564

    23. [23]

      23 Zhang H, Liu R T, Chi Z X, Gao C Z. Spectrochim. Acta, Part A, 2011, 78:523-527

    24. [24]

      24 Zou M M, Li Y, Wang J, Gao J Q, Wang Q, Wang B X, Fan P. Spectrochim. Acta, Part A, 2013, 112:206-213

    25. [25]

      25 SUN Tao, GUO Hong-Rui, XU Huan-Lin, ZHOU Bao-Kuan. Chem. J. Chinese Universities, 2007, 28(5):856-858 孙 涛, 郭洪瑞, 许环麟, 周宝宽. 高等学校化学学报, 2007, 28(5):856-858

    26. [26]

      26 Li Z P, Li K A, Tong S Y. Anal. Lett., 1999, 32(5):901-913

    27. [27]

      27 Wu Z Z, Li W Y, Chen J, Yu C. Talanta, 2014, 119:538-543

    28. [28]

      28 Chen Z, Lu D T, Cai Z W, Dong C, Shuang S M. Luminescence, 2014, 29(7):722-727

    29. [29]

      29 Hu Y H, Wu Y M, Chen T T, Chu X, Yu R Q. Anal. Methods, 2013, 5(14):3577-3581

  • 加载中
    1. [1]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    8. [8]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    9. [9]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    13. [13]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    14. [14]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    15. [15]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    16. [16]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    17. [17]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    18. [18]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    19. [19]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    20. [20]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

Metrics
  • PDF Downloads(0)
  • Abstract views(516)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return