Citation: LI Yuan, YUAN Guo-Lin, XIA Chun-Yong, YU Chao. Construction of a Cell Impedance Biosensor Based on Polypyrrole-Indium Tin Oxide Micro-Electrode for Detecting Cell Biology Behavior[J]. Chinese Journal of Analytical Chemistry, ;2015, 43(12): 1844-1850. doi: 10.11895/j.issn.0253-3820.150396 shu

Construction of a Cell Impedance Biosensor Based on Polypyrrole-Indium Tin Oxide Micro-Electrode for Detecting Cell Biology Behavior

  • Corresponding author: YU Chao, 
  • Received Date: 14 May 2015
    Available Online: 25 August 2015

    Fund Project: 本文系重庆市科委自然科学基金计划资助项目(cstc2012jjA10046) (cstc2012jjA10046)重庆市永川区创新能力建设平台项目(Ycstc,2014bf5001) (Ycstc,2014bf5001)重庆医科大学附属永川医院院级重点研究项目(YJZD201302)资助 (YJZD201302)

  • An indium tin oxide(ITO) microelectrode was fabricated by etching the insulating layer of photosensitive dry film using lithography technology, then polypyrrole(PPy) layer with different thickness was electrodeposited on the surface of the ITO microelectrode by electrochemical cyclic voltammetry to get PPy-ITO microelectrode. The effect of the thickness of PPy layer on the impedance characteristic of PPy-ITO microelectrode was examined by electrochemical impedance spectroscopy(EIS). The biocompatibility of the PPy-ITO microelectrodes was investigated by adhesion and proliferation experiment of human lung cancer cell A549. Finally, using PPy-ITO microelectrode as sensing electrode, biology information on the adhesion, proliferation and epithelial-mesenchymal transition(EMT) of A549 was tested and analyzed by EIS and equivalent circuit fitting. The results showed that the PPy-ITO microelectrode prepared under optimal parameter(electrodeposition for five cycles) had a lower electrical impedance and a better cell compatibility than bare ITO microelectrode. The changes of cytoplasm membrane capacitance, intercellular resistance and the gap resistance between cell and polypyrrole film during the processes of adhesion, proliferation and epithelial-mesenchymal transition(EMT) of A549 could be detected by a cell impedance biosensor based on the PPy-ITO microelectrode.
  • 加载中
    1. [1]

      1 Giaever I, Keese C R. P. Natl. Acad. Sci. USA, 1984, 81(12):3761-3764

    2. [2]

      2 Yu H, Wang J, Liu Q, Zhang W, Cai H, Wang P. Biosens. Bioelectron., 2011, 26(6):2822-2827

    3. [3]

      3 Vistejnova L, Dvorakova J, Hasova M, Muthny T, Velebny V, Soucek K, Kubala L. Neuro Endocrinol. Lett., 2009, Suppl 1(1):121-127

    4. [4]

      4 Alborzinia H, Can S, Holenya P, Scholl C, Lederer E, Kitanovic I, Wölfl S. PLoS One, 2011, 6(5):e19714-e19723

    5. [5]

      5 Gu W, Zhu P, Jiang D, He X, Li Y, Ji J, Zhang L, Sun Y, Sun X. Biosens. Bioelectron., 2015, 70(1):447-454

    6. [6]

      6 Widder M W, Brennan L M, Hanft E A, Schrock M E, James R R, van der Schalie W H. J. Appl. Toxicol., 2014, 35(1):701-708

    7. [7]

      7 Kramer A H, Joos-Vandewalle J, Edkins A L, Frost C L, Prinsloo E. Biochem. Biophys. Res. Commun., 2014, 443(4):1245-1250

    8. [8]

      8 Arndt S, Seebach J, Psathaki K, Galla H J, Wegener J. Biosens. Bioelectron., 2004, 19(6):583-594

    9. [9]

      9 Venkatanarayanan A, Keyes T E, Forster R J. Anal. Chem., 2013, 85(4):2216-2222

    10. [10]

      10 Choi C K, English A E, Jun S I, Kihm K D, Rack P D. Biosens. Bioelectron., 2007, 22(11):2585-2590

    11. [11]

      11 Cho H Y, Eun-Bi-Ko, Kim T H, Choi J W. J. Biomed. Nanotechnol., 2013, 9(8):1398-1402

    12. [12]

      12 Ates M. Mater Sci. Eng. C Mater. Biol. Appl., 2013, 33(4):1853-1859

    13. [13]

      13 Balint R, Cassidy NJ, Cartmell SH. Acta Biomater., 2014, 10(6):2341-2353

    14. [14]

      14 Harris A R, Morgan S J, Chen J, Kapsa R M, Wallace G G. J. Neural. Eng., 2013, 10(1):016004-016020

    15. [15]

      15 Lakard S, Herlem G, Valles-Villareal N, Michel G, Propper A, Gharbi T, Fahys B. Biosens. Bioelectron., 2005, 20(10):1946-1954

    16. [16]

      16 Garner B, Hodgson A J, Wallace G G, Underwood P A. J. Mater. Sci. Mater. Med., 1999, 10(1):19-27

    17. [17]

      17 Nishizawa M, Nozaki H, Kaji H, Kitazume T, Kobayashi N, Ishibashi T, Abe T. Biomaterials, 2007, 28(8):1480-1485

    18. [18]

      18 Ding L, Hao C, Zhang X J, Ju H X. Electrochem. Commun., 2009, 11(4):760-763

    19. [19]

      19 Ateh D D, Waterworth A, Walker D, Brown B H, Vadgama P. J. Biomed. Mater. Res. A, 2007, 83(2):391-400

    20. [20]

      20 Cui X Y, Hetke J F, Wiler J A, Anderson D J, Martin D C. Sens. Actuators A, 2001, 93(1):8-18

    21. [21]

      21 Ramanavicius A, Finkelsteinas A, Cesiulis H, Ramanaviciene A. Bioelectrochemistry, 2010, 79(1):11-16

    22. [22]

      22 Karimullah A S, Cumming D R S, Riehle M, Gadegaard N. Sens. Actuators B, 2013, 176(1):667-674

    23. [23]

      23 Hong J, Kandasamy K, Marimuthu M, Choi C S, Kim S. Analyst, 2011, 136(2):237-245

    24. [24]

      24 Benson K, Cramer S, Galla H J. Fluids Barriers CNS., 2013, 10(1):5-16

    25. [25]

      25 Kasai H, Allen J T, Mason R M, Kamimura T, Zhang Z. Respir. Res., 2005, 6(1):56-71

    26. [26]

      26 Buckley S T, Medina C, Kasper M, Ehrhardt C. Am J. Physiol. Lung Cell Mol. Physiol., 2011, 300(4):L548-L559

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    10. [10]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    16. [16]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    17. [17]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(0)
  • Abstract views(311)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return