Citation: LI Ning-Bo, HE Feng-Yun, LI Li, HU Yao-Juan, BAI Cheng-Chao, DUAN Yu-Qing. Selective Determination of Uric Acid at Nitrogen-doped Graphene/Chitosan Composite Modified Electrode in the Presence of a Large Amount of Ascorbic Acid[J]. Chinese Journal of Analytical Chemistry, ;2015, 43(12): 1859-1863. doi: 10.11895/j.issn.0253-3820.150340 shu

Selective Determination of Uric Acid at Nitrogen-doped Graphene/Chitosan Composite Modified Electrode in the Presence of a Large Amount of Ascorbic Acid

  • Corresponding author: HE Feng-Yun, 
  • Received Date: 27 April 2015
    Available Online: 10 August 2015

    Fund Project: 本文系南京大学生命分析国家重点实验室开放研究基金(No.SKLACLS1308) (No.SKLACLS1308)江苏省大学生创新训练项目(No.201411460025Y) (No.201411460025Y)

  • Nitrogen-doped graphene was synthesized by one-step hydrothermal method. A nitrogen-doped graphene-chitosan modified electrode(N-GN-CS/GCE) was prepared and the electrochemical behavior of uric acid in the presence of a large amount of ascorbic acid was investigated at the modified electrode. The peak current of uric acid at the modified electrode was 7 times as that at unmodified electrode. The peak separation of uric acid and ascorbic acid was 362 mV and uric acid could be accurately determined in the presence of a large amount of ascorbic acid. Some experimental parameters such as dopping volume, pH and scan rate were optimized and a standard curve was also established using differential pulse voltammetry. The linear range between the peak current and the concentration of uric acid was 0.1~20μmol/L and 20-400μmol/L, and the detection limit was estimated to be 0.01μmol/L. The proposed method was applied to the analysis of uric acid in human urine sample with recoveries between 99.7% and 103.4%.
  • 加载中
    1. [1]

      1 Zhao S L, Wang J S, Ye F G, Liu Y M. Anal. Biochem., 2008, 378:127-131

    2. [2]

      2 Huang L, Jiao S F, Li M G. Electrochim. Acta., 2014, 121:233-239

    3. [3]

      3 Galbán J, Andreu Y, Almenara M J, Marcos S D, Castillo J R.Talanta, 2001, 54(5):847-854

    4. [4]

      4 Kanœár R, Drábková P, Hampl R. J. Chromatogr. B, 2011, 879(26):2834-2839

    5. [5]

      5 Gahison L, Chiadmi M, Colloc'h N, Castro B, Hajji M E, Prange T. FEBS Lett., 2006, 580(8):2087-2091

    6. [6]

      6 Zhang L, Yang D. Electrochim. Acta, 2014, 119:106-113

    7. [7]

      7 Deng K Q, Zhou J H, Li X F. Electrochim. Acta, 2013, 114:341-346

    8. [8]

      8 Dorraji P S, Jalali F. Sensors and Actuators B, 2014, 200:251-258

    9. [9]

      9 Alipour E, Majidi M R, Saadatirad A, Golabi S M, Alizadeh A M. Electrochim. Acta, 2013, 91:36-42

    10. [10]

      10 Nancy T E M, Anithakumary V, Swamy B E K. J. Electroanal. Chem., 2014, 720-721:107-114

    11. [11]

      11 HU Yao-Juan, JIN Juan, ZHANG Hui, WU Ping, CAI Chen-Xin. Acta Phys. Chim. Sin., 2010, 26(8):2073-2086 胡耀娟, 金 娟, 张 卉, 吴 萍, 蔡称心. 物理化学学报, 2010, 26(8):2073-2086

    12. [12]

      12 HUANG Hai-Ping, ZHU Jun-Jie. Chinese. J. Anal. Chem., 2011, 39(7):963-971 黄海平, 朱俊杰. 分析化学, 2011, 39(7):963-971

    13. [13]

      13 LIN Ting-Ting, LU Qiu-Feng. Chinese. Funct. Mater., 2015, 46(5):5007-5012 林婷婷, 吕秋丰. 功能材料, 2015, 46(5):5007-5012

    14. [14]

      14 SU Peng, GUO Hui-Lin, PENG San, NING Sheng-Ke. Acta Phys. Chim. Sin., 2012, 28(11):2745-2753 苏 鹏, 郭慧林, 彭 三, 宁生科. 物理化学学报, 2012, 28(11):2745-2753

    15. [15]

      15 Sun L, Wang L, Tian C, Tan T, Y Xie Y, Shi K, Li M, Fu H. RSC Advances, 2012, 2:4498-4506

    16. [16]

      16 Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z S, Alemany A S, Lu W, Alemany L B, Tour J M. ACS NANO, 2010, 4(8):4806-4814

    17. [17]

      17 Laviron E. J. Electroanal. Chem., 1979, 101(1):19-28

    18. [18]

      18 Khan M M, Haque A M J, Kim K. J. Electroanal. Chem., 2013, 700:54-59

    19. [19]

      19 Wang C Y, Liu L, Xue H G, Hu X Y, WanG X. Sensors and Actuators B, 2013, 181:194-201

    20. [20]

      20 SUN Kai, SUN Deng-Ming. Chinese. J. Anal. Chem., 2014, 42(7):991-996 孙 凯, 孙登明. 分析化学, 2014, 42(7):991-996

    21. [21]

      21 WU Ling, CAO Zhong, SONG Tian-Ming, SONG Yue, XIE Jing-Lei, HE Jing-Lin, XIAO Zhong-Liang. Chinese. J. Anal. Chem., 2014, 42(11):1656-1660 吴 玲, 曹 忠, 宋天铭, 宋 铖, 谢晶磊, 何婧琳, 肖忠良. 分析化学, 2014, 42(11):1656-1660

    22. [22]

      22 FU Hai-Ying, WANG Jian-Xiu, DENG Liu. Chinese. J. Anal. Chem., 2014, 42(3):441-445 付海莹, 王建秀, 邓 留. 分析化学, 2014, 42(3):441-445

  • 加载中
    1. [1]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    2. [2]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    3. [3]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    4. [4]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    9. [9]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    10. [10]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    14. [14]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    17. [17]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(0)
  • Abstract views(758)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return