Citation: ZENG Han, YANG Yang, LI Xiao-Juan, BAI Xi. Performance of Laccase-entrapped Magnetic Nano-particle Composite Modified Electrode as Biocathode in Enzymatic Biofuel Cell and Elecrochemical Sensor for Oxygen Detection[J]. Chinese Journal of Analytical Chemistry, ;2015, 43(12): 1794-1800. doi: 10.11895/j.issn.0253-3820.150337 shu

Performance of Laccase-entrapped Magnetic Nano-particle Composite Modified Electrode as Biocathode in Enzymatic Biofuel Cell and Elecrochemical Sensor for Oxygen Detection

  • Corresponding author: ZENG Han, 
  • Received Date: 26 April 2015
    Available Online: 21 July 2015

    Fund Project: 本文系国家自然科学基金(No.21363024) (No.21363024)新疆维吾尔自治区2013年度高校科研计划青年教师培育项目(No.XJEDU2013S29) (No.XJEDU2013S29)新疆师范大学博士科研启动基金项目(No.XJNUBS1228)资助 (No.XJNUBS1228)

  • A nano-composite of phthalated Chitosan and magnetic ferroferric oxide nano-particle was prepared by mechanically mixing as method, and laccase was then adsorbed on the composite ot obtain immobilized laccase. Then the composite with laccase was dripped onto the surface of glassy carbon electrode and dried in air under room temperature to prepare laccase-immobilized biocathode. Catalytic effect in oxygen reduction reaction and performance of oxygen electrochemical sensor of this laccase-based electrode were systematically investigated by cyclic voltammetry, linear scanning voltammetry and chronoamperometry. Experimental results indicated that direct electron transfer between enzyme active centre T1 in laccase and conductive matrix ccould be achieved in solution without any electron relay, characterized with one-electron quasi-reversible redox reaction signal(Equilibrium potential:798 mV, very close to the formal potential of T1 centre in laccase 780 mV). It also featured with surface coverage of 1.5×10-9 mol/cm2 conductive enzyme molecules, electron relay rate of 0.05 s-1, onset potential for oxygen reduction of 930 mV, substrate turn-over frequency of 0.3 dioxygen molecules/s. Linear relationship in steady catalytic current of laccase-based electrode versus oxygen concentration was found within the oxygen concentration range of 2.6-33.9μmol/L under optimal conditions. This electrode as oxygen electrochemical sensor showed a low detection limit of 0.86μmol/L, high sensitivity(17.2μA·L/μmol), and Michaelis-Menten constant KM=131.1μmol/L. Further tests confirmed its excellent reproducibility and long-term usability in catalytic function towards oxygen reduction, with optimal pH=4.4.
  • 加载中
    1. [1]

      1 Zhang L L, Zhou M, Dong S J. Anal. Chem., 2012, 84(23):10345-10349

    2. [2]

      2 Zhao H Y, Zhou H M, Zhang J X, Zheng W, Zheng Y F. Biosens. Bioelectron., 2009, 25(2):463-468

    3. [3]

      3 Stolarczyk K, Nazaruk E, Rogalski J, Bilewicz R. Electrochem. Commun., 2007, 9(1):115-118

    4. [4]

      4 Willner I, Yan Y M, Willner B, Tel-Vered R. Fuel Cells, 2009, 9(1):7-24

    5. [5]

      5 Shleev S, Jarosz-Wilkolazka A, Khalunina A, Morozova O, Yaropolov A, Ruzgas T, Gorton L. Bioelectrochemistry, 2005, 67(1):115-124

    6. [6]

      6 Osman M H, Shah A A, Walsh F C. Biosens. Bioelectron., 2011, 26(7):3087-3102

    7. [7]

      7 Liu Y, Qu X H, Guo H W, Chen H J, Liu B F, Dong S J. Biosens. Bioelectron., 2006, 21(12):2195-2201

    8. [8]

      8 Arrocha A A, Cano-Castillo U, Aguila S A, Vazquez-Duhalt R. Biosens. Bioelectron., 2014, 61:569-574

    9. [9]

      9 Pang H L, Liu J, Hu D, Zhang X H, Chen J H. Electrochim. Acta, 2010, 55(22):6611-6616

    10. [10]

      10 Qiu J D, Peng H P, Liang R P. Electrochem. Commun., 2007, 9(11):2734-2738

    11. [11]

      11 Deng M F, Zhao H, Zhang S P, Tian C Y, Zhang D, Du P H, Liu C M, Cao H B, Li H P. J. Mol. Catal. B, 2015, 112:15-24

    12. [12]

      12 Jiang D S, Long S Y, Huang J, Xiao H Y, Zhou J Y. Biochem. Eng. J., 2005, 25(1):15-23

    13. [13]

      13 Blandford C F, Heath R S, Armstrong F A. Chem. Commun., 2007, 43:1710-1712

    14. [14]

      14 Martinez-Ortiz J, Flores R, Vazquez-Duhalt R. Biosens. Bioelectron., 2011, 26(5):2626-2631

    15. [15]

      15 Yang L R, Guo C, Chen S, Wang F, Wang J, An Z T, Liu C Z, Liu H Z. Ind. Eng. Chem. Res., 2009, 48(2):944-950

    16. [16]

      16 HUANG Jun, ZHOU Ju-Ying, XIAO Hai-Yan, LONG Sheng-Ya, WANG Jun-Tao. Acta Chim. Sinica, 2005, 63(14):1343-1347 黄 俊, 周菊英, 肖海燕, 龙胜亚, 王军涛. 化学学报, 2005, 63(14):1343-1347

    17. [17]

      17 Zhu Y F, Kaskel S, Shi J L, Wage T, Pee K-H V. Chem. Mater., 2007, 19(26):6408-6413

    18. [18]

      18 Qiu H J, Xu C X, Huang X R, Ding Y, Qu Y B, Gao P J. J. Phys. Chem. C, 2008, 112(38):14781-14785

    19. [19]

      19 Mano N, Kim H H, Zhang Y C, Heller A. J. Am. Chem. Soc., 2002, 124:6480-6486

    20. [20]

      20 Tsujimura S, Kamitaka Y, Kano K. Fuel Cells, 2007, 6:463-469

    21. [21]

      21 Zeng H, Tang Z Q, Liao L W, Kang J, Chen Y X. Chinese J. Chem. Phys., 2011, 12:10888-10895

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    6. [6]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    7. [7]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    8. [8]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    11. [11]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    12. [12]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    13. [13]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    14. [14]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    15. [15]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    18. [18]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    19. [19]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    20. [20]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

Metrics
  • PDF Downloads(0)
  • Abstract views(403)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return