Citation: Peipei CUI, Yawen ZHENG, Pan LI, Peiyan GUAN, Zhaohong QIAN. Praseodymium-organic framework with 4, 4′-oxybis(benzoic acid): Rare broken layer structure, antibacterial activity, and sensing for Cd2+ ions[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(8): 1641-1649. doi: 10.11862/CJIC.20250152 shu

Praseodymium-organic framework with 4, 4′-oxybis(benzoic acid): Rare broken layer structure, antibacterial activity, and sensing for Cd2+ ions

  • Corresponding author: Peipei CUI, 1cuipeipei1@163.com Zhaohong QIAN, 
  • Received Date: 5 May 2025
    Revised Date: 8 July 2025

Figures(5)

  • A novel 3D metal-organic framework (MOF) [Pr2(L)3(H2O)5·H2O]n (Pr-1), (H2L=4, 4′-oxybis(benzoic acid)) with a rare structure of broken layer net, was constructed under the condition of solvothermal synthesis. The structure and crystal net were analyzed and characterized. This rod net of Pr-1 is new to both RCSR and ToposPro databases, and is named as rn-12 as suggested. Due to the luminescent properties of H2L and Pr(Ⅲ), the solid-state fluorescence property and sensing performance (solvents and metal ions) of Pr-1 were investigated. The sensing experiments indicated that Pr-1 could act as a fluorescence sensor to detect Cd2+ ions with good sensitivity. In addition, antibacterial activities show that Pr-1 exhibited stronger antibacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Bacillus subtilis (B. subtilis) compared to synthetic materials.
  • 加载中
    1. [1]

      CHAKRABORTY G, PARK I H, MEDISHETTY R, VITTAL J J. Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications[J]. Chem. Rev., 2021,121(7):3751-3891.

    2. [2]

      XU H Q, LI J, LIU L, LIANG F S, HAN Z B. Pore space partitioning MIL-88(Co): Developing robust adsorbents for CO2/CH4 separation featured with high CO2 adsorption and rapid desorption[J]. Inorg. Chem., 2023,62(33):13530-13536.

    3. [3]

      CAI G R, YAN P, ZHANG L L, ZHOU H C, JIANG H L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications[J]. Chem. Rev., 2021,121(20):12278-12326.

    4. [4]

      TUNINETTI J S, SERRANO M P, THOMAS A H, AZZARONI O, RAFTI M. Shelter for biologically relevant molecules: Photoprotection and enhanced thermal stability of folic acid loaded in a ZIF-8 MOF porous host[J]. Ind. Eng. Chem. Res., 2020,59(51):22155-22162.

    5. [5]

      CAAMANO K, HERAS-MOZOS R, CALBO J, CDIAZ J, WAERENBORGH J C, VIEIRA B J C, HERNANDEZ-MUNOZ P, GAVARA R, GIMENEZ-MARQUES M. Exploiting the redox activity of MIL-100(Fe) carrier enables prolonged carvacrol antimicrobial activity[J]. ACS Appl. Mater. Interfaces, 2022,14(8):10758-10768.

    6. [6]

      WANG C Y, QIN J C, YANG Y W. Multifunctional metal-organic framework (MOF)-based nanoplatforms for crop protection and growth promotion[J]. J. Agric. Food Chem., 2023,71(15):5953-5972.

    7. [7]

      YANG L, WEI F, LIU J M, WANG S. Functional hybrid micro/nanoentities promote agro-food safety inspection[J]. J. Agric. Food Chem., 2021,69(42):12402-12417.

    8. [8]

      DING M L, FLAIG R W, JIANG H L, YAGHI O M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chem. Soc. Rev., 2019,48(10):2783-2828.

    9. [9]

      DAI F N, DOU J M, HE H Y, ZHAO X L, SUN D F. Self-assembly of metal-organic supramolecules: From a metallamacrocycle and a metal-organic coordination cage to 1D or 2D coordination polymers based on flexible dicarboxylate ligands[J]. Inorg. Chem., 2010,49(9):4117-4124.

    10. [10]

      CUI P P, WU J L, ZHAO X L, SUN D, ZHANG L L, GUO J, SUN D F. Two solvent-dependent zinc(Ⅱ) supramolecular isomers: Rare kgd and lonsdaleite network topologies based on a tripodal flexible ligand[J]. Cryst. Growth Des., 2011,11(12):5182-5187.

    11. [11]

      CUI P P, DOU J M, SUN D, DAI F N, SUN D F, WU Q Y. Reaction vessel-and concentration-induced supramolecular isomerism in layered lanthanide-organic frameworks[J]. CrystEngComm, 2011,13:6968-6971.

    12. [12]

      YU X Y, GU J M, LIU X Y, CHANG Z Y, LIU Y L. Exploring the effect of different secondary building units as Lewis acid sites in MOF materials for the CO2 cycloaddition reaction[J]. Inorg. Chem., 2023,62(29):11518-11527.

    13. [13]

      TSANGARAKIS C, AZMY A, TAMPAXIS C, ZIBOUCHE N, KLONTZAS E, TYLIANAKIS E, FROUDAKIS G E, STERIOTIS T, SPANOPOULOS I, TRIKALITIS P N. Water-stable etb-MOFs for methane and carbon dioxide storage[J]. Inorg. Chem., 2023,62(14):5496-5504.

    14. [14]

      GUO Z G, CAO R, WANG X, LI H F, YUAN W B, WANG G J, WU H H, LI J. A multifunctional 3D ferroelectric and NLO-active porous metal-organic framework[J]. J. Am. Chem. Soc., 2009,131(20):6894-6895.

    15. [15]

      ZHENG B S, BAI J F, DUAN J G, WOJTAS L, ZAWOROTKO M J. Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups[J]. J. Am. Chem. Soc., 2011,133(4):748-751.

    16. [16]

      ZHANG M X, ZHOU W, PGAM T, FORREST K A, LIU W L, HE Y B, WU H, YILDIRIM T, CHEN B L, SPACE B, PAN Y, ZAWOROTKO M J, BAI J F. Fine tuning of MOF-505 analogues to reduce low-pressure methane uptake and enhance methane working capacity[J]. Angew. Chem.‒Int. Edit., 2017,56(38):11426-11430.

    17. [17]

      ZHANG M X, FORREST K A, LIU P H, DANG R, CUI H H, QIN G P, PHAM T, TANG Y F, WANG S. Significantly enhanced carbon dioxide selective adsorption via gradual acylamide truncation in MOFs: Experimental and theoretical research[J]. Inorg. Chem., 2022,61(49):19944-19950.

    18. [18]

      FENG L, WANG K Y, DAY G S, RYDER M R, ZHOU H C. Destruction of metal-organic frameworks: Positive and negative aspects of stability and lability[J]. Chem. Rev., 2020,120(23):13087-13133.

    19. [19]

      BAI Y, DOU Y B, XIE L H, RUTLEDGE W, LI J R, ZHOU H C. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications[J]. Chem. Soc. Rev., 2016,45(8):2327-2367.

    20. [20]

      WANG K C, LI Y P, XIE L H, LI X Y, LI J R. Construction and application of base-stable MOFs: A critical review[J]. Chem. Soc. Rev., 2022,51(15):6417-6441.

    21. [21]

      SU R H, SHI W J, ZHANG X Y, HOU L, WANG Y Y. Cu-MOFs with rich open metal and F sites for separation of C2H2 from CO2 and CH4[J]. Inorg. Chem., 2023,62(30):11869-11875.

    22. [22]

      XIE H H, HAN L, TANG S F. Functionalized zirconium organic frameworks as fluorescent probes for the detection of tetracyclines in water and pork[J]. Inorg. Chem., 2022,61(43):17322-17329.

    23. [23]

      CHU Q, LIU G X, HUANG Y Q, WANG X F, SUN W Y. Syntheses, structures, and optical properties of novel zinc(Ⅱ) complexes with multicarboxylate and N-donor ligands[J]. Dalton Trans., 2007(38):4302-4311.

    24. [24]

      WANG H L, ZHANG D P, SUN D F, CHEN Y T, ZHANG L F, TIAN L J, JIANG J Z, NI Z H. Co(Ⅱ) metal-organic frameworks (MOFs) assembled from asymmetric semirigid multicarboxylate ligands: Synthesis, crystal structures, and magnetic properties[J]. Cryst. Growth Des., 2009,9(12):5273-5282.

    25. [25]

      ZHANG X Y, SHI W J, WANG G D, HOU L, WANG Y Y. One Co-MOF with F active sites for separation of C2H2 from CO2, C2H4, and CH4[J]. Inorg. Chem., 2023,62(40):16574-16581.

    26. [26]

      ZHANG M M, ZHAO J S, LI S Q, LUO X L, ZHANG S T, SHAO Y Z, ZHU X F. Cu-based metal-organic frameworks characterized by V-shaped ligands and application to efficient separation of C2H2/CO2 and C2H2/CH4[J]. Cryst. Growth Des., 2025,25(7):2002-2012.

    27. [27]

      SI C D, ZHANG J B, PAN F F, YAN X, WANG P, XUE D Q, LI X J, LIU J C, YUAN K. Tuning dimensions of complexes through selective in situ reaction, mechanistic insights into Ni(Ⅱ)-catalyzed Br-OH exchange, magnetic properties, and density functional theory studies[J]. Inorg. Chem., 2022,61(49):20159-20168.

    28. [28]

      GAO X J, WU T T, GE F Y, LEI M Y, ZHENG H G. Regulation of chirality in metal-organic frameworks (MOFs) based on achiral precursors through substituent modification[J]. Inorg. Chem., 2022,61(46):18335-18339.

    29. [29]

      TAO J, SHI J X, TONG M L, ZHANG X X, CHEN X M. A new inorganic-organic photoluminescent material constructed with helical[Zn3(μ3-OH)(μ2-OH)] chain[J]. Inorg. Chem., 2001,40(24):6328-6330.

    30. [30]

      CHENG X N, ZHANG W X, CHEN X M. Metal ion modulation of polycatenation networks constructed by mixed rigid and flexible bridging ligands[J]. CrystEngComm, 2011,13:6613-6615.

    31. [31]

      MAHATA P, DRAZNIEKS C M, ROY P, NATARAJAN S. Solid state and solution mediated multistep sequential transformations in metal-organic coordination networks[J]. Cryst. Growth Des., 2013,13(1):155-168.

    32. [32]

      MASOOMI M Y, BAGHERI M, MORSALI A. Application of two cobalt-based metal-organic frameworks as oxidative desulfurization catalysts[J]. Inorg. Chem., 2015,54(23):11269-11275.

    33. [33]

      HU F L, MI Y, ZHU C, ABRAHAMS B F, BRAUNSTEIN P, LANG J P. Stereoselective solid-state synthesis of substituted cyclobutanes assisted by pseudorotaxane-like MOFs[J]. Angew. Chem.‒Int. Edit., 2018,57(39):12696-12701.

    34. [34]

      GOSCH J, VENTURI D M, GRAPE E S, ATZORI C, DONA L, STEINKE F, OTTO T, TJARDTS T, CIVALLERI B, LOMACHENKO K A, INGE A K, COSTANTINO F, STOCK N. Synthesis, crystal structure, and photocatalytic properties of two isoreticular Ce􀃯-MOFs with an infinite rod-shaped inorganic building unit[J]. Inorg. Chem., 2023,62(13):5176-5185.

    35. [35]

      SCHOEDEL A, LI M, LI D, O'KEEFFE M, YAGHI O M. Structures of metal-organic frameworks with rod secondary building units[J]. Chem. Rev., 2016,116(19):12466-12535.

    36. [36]

      DELGADO-FRIEDRICHS O, O'KEEFFE M. Identification of and symmetry computation for crystal nets[J]. Acta Crystallogr. Sect. A, 2003,A59(4):351-360.

    37. [37]

      LI M, LI D, O'KEEFFE M, YAGHI O M. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle[J]. Chem. Rev., 2014,114(2):1343-1370.

    38. [38]

      BLATOV V A, SHEVCHENKO A P, PROSERPIO D M. Applied topological analysis of crystal structures with the program package ToposPro[J]. Cryst. Growth Des., 2014,14(7):3576-3586.

    39. [39]

      BLATOV V A, O'KEEFFE M, PROSERPIO D M. Vertex-, face-, point-, Schläfli-, and delaney-symbols in nets, polyhedra and tilings: Recommended terminology[J]. CrystEngComm, 2010,12:44-48.

    40. [40]

      O'KEEFFE M, PESKOV M A, RAMSDEN S J, YAGHI O M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets[J]. Accounts Chem. Res., 2008,41(12):1782-1789.

    41. [41]

      SHEVCHENKO A P, SHABALIN A A, KARPUKHIN I Y, BLATOV V A. Topological representations of crystal structures: Generation, analysis and implementation in the TopCryst system[J]. Sci. Technol. Adv. Mater. Methods, 2022,2(1):250-265.

    42. [42]

      O'KEEFFE M, YAGHI O M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets[J]. Chem. Rev., 2012,112(2):675-702.

    43. [43]

      TRIPATHI S, SACHAN S K, ANANTHARAMAN G. Crystal engineering of zinc and cadmium coordination polymers via a mixed-ligand strategy regulated by aromatic rigid/flexible dicarboxylate ancillary ligands and metal ionic radii: Tuning structure, dimension and photoluminescence properties[J]. Polyhedron, 2016,119(24):55-70.

    44. [44]

      SHI Z Q, LI Y Z, GUO Z J, ZHENG H G. Six new 2D or 3D metal-organic frameworks based on bithiophene-containing ligand and dicarboxylates: Syntheses, structures, and properties[J]. Cryst. Growth Des., 2013,13(7):3078-3086.

    45. [45]

      MAWAI K, NATHANI S, ROY P, SINGH U P, GHOSH K. Combined experimental and theoretical studies on selective sensing of zinc and pyrophosphate ions by rational design of compartmental chemosensor probe: Dual sensing behaviour via secondary recognition approach and cell imaging studies[J]. Dalton Trans., 2018,47(18):6421-6434.

    46. [46]

      CUI P P, SUN Y, ZHA Y, LIU S N, ZHANG M X, CAO J Y, WANG Q, WANG X Q. Synthesis, structural characterization, and fluorescence property of three coordination polymers with dicarboxylate ligands[J]. Chinese J. Inorg. Chem., 2023,39(12):2358-2366.

    47. [47]

      CHAKI N K, MANDAL S, REBER A C, QIAN M, SAAVEDRA H M, WEISS P S, KHANNA S N, SEN A. Controlling band gap energies in cluster-assembled ionic solids through internal electric fields[J]. ACS Nano, 2010,4(10):5813-5818.

    48. [48]

      LI F F, ZHU M L, LU L P, WANG A. A novel monocapped square-antiprismatic Ba(Ⅱ) coordination polymer: A design for dual-responsive fluorescent chemosensor for Cr2O72- and Fe(Ⅲ)[J]. J. Solid State Chem., 2020,290121582.

    49. [49]

      SHI Y, QU X L, LU Q L, ZHAO J, MA Q C, SUN W, OUYANG G X, FU W, TAO X Y, HUANG D S. Stable lanthanide-organic frameworks: Crystal structure, photoluminescence, and chemical sensing of vanillylmandelic acid as a biomarker of pheochromocytoma[J]. Inorg. Chem., 2023,62(18):6934-6947.

    50. [50]

      JIANG Q J, LIN J Y, HU Z J, HSIAO V K S, CHUNG M Y, WU J Y. Luminescent zinc(Ⅱ) coordination polymers of bis(pyridin-4-yl)benzothiadiazole and aromatic polycarboxylates for highly selective detection of Fe(Ⅲ) and high-valent oxyanions[J]. Cryst. Growth Des., 2021,21(4):2056-2067.

    51. [51]

      LIU W, CUI H L, ZHOU J, SU Z T, ZHANG Y Z, CHEN X L, YUE E L. Synthesis of a Cd-MOF fluorescence sensor and its detection of Fe3+, fluazinam, TNP, and sulfasalazine enteric-coated tablets in aqueous solution[J]. ACS Omega, 2023,8(27):24635-24643.

    52. [52]

      YANG Y T, TU C Z, LIU Z N, WANG J L, YANG X L, CHENG F X. 5-Nitro-isophthalic acid based Co(Ⅱ)-coordination polymers: Structural diversity tuned by imidazolyl ligands, efficient dye degradation and luminescence sensing[J]. Polyhedron, 2021,206(15)115339.

    53. [53]

      LI Y W, LI J, WAN X Y, SHENG D F, YAN H, ZHANG S S, MA H Y, WANG S N, LI D C, GAO Z Y, DOU J M, SUN D. Nanocage-based N-rich metal-organic framework for luminescence sensing toward Fe3+ and Cu2+ ions[J]. Inorg. Chem., 2021,60(2):671-681.

  • 加载中
    1. [1]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    2. [2]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    3. [3]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    4. [4]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    5. [5]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    6. [6]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    7. [7]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    8. [8]

      Yukun CHENKexin FENGBolun ZHANGWentao SONGJianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448

    9. [9]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    10. [10]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    11. [11]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    12. [12]

      Bofei JIAZhihao LIUZongyuan GAOShuai ZHOUMengxiang WUQian ZHANGXiamei ZHANGShuzhong CHENXiaohan YANGYahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317

    13. [13]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    14. [14]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    15. [15]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    16. [16]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    17. [17]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    18. [18]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    19. [19]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    20. [20]

      Zhongchao ZhouJian SongYinghao XieYuqian MaHong HuHui LiLei ZhangCharles H. Lawrie . DFT calculation for organic semiconductor-based gas sensors: Sensing mechanism, dynamic response and sensing materials. Chinese Chemical Letters, 2025, 36(6): 110906-. doi: 10.1016/j.cclet.2025.110906

Metrics
  • PDF Downloads(0)
  • Abstract views(2)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return