Citation: Ri PENG, Yingxiang BAI, Yuxin XIE, Dunru ZHU. cis/trans-Octahedral configuration induced topologically different MOFs: Syntheses, structures, and Hirshfeld surface analyses[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(8): 1650-1660. doi: 10.11862/CJIC.20250143 shu

cis/trans-Octahedral configuration induced topologically different MOFs: Syntheses, structures, and Hirshfeld surface analyses

  • Corresponding author: Dunru ZHU, zhudr@njtech.edu.cn
  • Received Date: 25 April 2025
    Revised Date: 19 May 2025

Figures(6)

  • Two metal-organic frameworks (MOFs), trans-[Co(L)(μ2-H2O)(H2O)2]·2H2O (1) and cis-[Mn(L)(Bipy)] (2) (H2L=2, 2′-dimethyl-4, 4′-biphenyldicarboxylic acid, Bipy=4, 4′-bipyridine), have been synthesized and characterized by FTIR, thermogravimetric analysis (TGA), powder and single crystal X-ray diffraction. MOF 1 crystallizes in the triclinic system with a P1 space group and contains two crystallographically different Co(Ⅱ) ions. Each trans-[CoO6] octahedron is connected by μ2-H2O and L2- ligand with a bis(unidentate) coordination mode to produce a 2D sql topological network. MOF 2 crystallizes in the monoclinic system with a C2/c space group. The Mn(Ⅱ) cation adopts a cis-[MnO4N2] octahedron as a 6-connected node and is linked by L2- ligand as a 4-connected node to generate a binodal (4, 6)-connected 3D fsc framework. The intermolecular interactions in 1 and 2 have been investigated by 3D Hirshfeld surface analyses and 2D fingerprint plots to reveal that the main interactions are H…H and O…H/H…O contacts in 1, and H…H and C…H/H…C contacts in 2. The TGA indicated that 1 and 2 were stable below 390 and 370 ℃, respectively.
  • 加载中
    1. [1]

      ZHU D R, XU Y, YU Z, GUO Z J, SANG H, LIU T, YOU X Z. A novel bis(trans-thiocyanate)iron(Ⅱ) spin-transition molecular material with bidentate triaryltriazole ligands and its bis(cis-thiocyanate)iron(Ⅱ) high-spin isomer[J]. Chem. Mater., 2002,14(2):838-843.

    2. [2]

      GAO T, WANG X Z, GU H X, XU Y, SHEN X, ZHU D R. Two 3D metal-organic frameworks with different topologies, thermal stabilities and magnetic properties[J]. CrystEngComm, 2012,14(18):5905-5913.

    3. [3]

      LI J T, LUO X L, ZHOU Y, ZHANG L R, HUO Q S, LIU Y L. Two metal-organic frameworks with structural varieties derived from cis-trans isomerism nodes and effective detection of nitroaromatic explosives[J]. Cryst. Growth Des., 2018,18(3):1857-1863.

    4. [4]

      XUE Y Y, LI S N, JIANG Y C, HU M C, ZHAI Q G. Quest for 9-connected robust metal-organic framework platforms based on[M3(O/OH)(COO)6(pyridine)3] clusters as excellent gas separation and asymmetric supercapacitor materials[J]. J. Mater. Chem. A, 2019,7(9):4640-4650.

    5. [5]

      ZENG H, XIE M, WANG T, WEI R J, XIE X J, ZHAO Y F, LU W G, LI D. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures[J]. Nature, 2021,595:542-548.

    6. [6]

      ZHU J, USOV P M, XU W Q, CELIS-SALAZAR P J, LIN S Y, KESSINGER M C, LANDAVERDE-ALVARADO C, CAI M, MAY A M, SLEBODNICK C, ZHU D R, SENANAYAKE S D, MORRIS A J. A new class of metal-cyclam-based zirconium metal-organic frameworks for CO2 adsorption and chemical fixation[J]. J. Am. Chem. Soc., 2018,140(3):993-1003.

    7. [7]

      LI Y X, LI J, ZHU D R, WANG J Z, SHU G F, LI J J, ZHANG S L, ZHANG X J, COSNIER S, ZENG H B, SHAN D. 2D Zn-porphyrin-based Co(Ⅱ)-MOF with 2-methylimidazole sitting axially on the paddle-wheel units: An efficient electrochemiluminescence bioassay for SARS-CoV-2[J]. Adv. Funct. Mater., 2022,32(48)2209743.

    8. [8]

      ZHANG S L, XIE Y X, SOMERVILLE R J, TIRANI F F, SCOPELLITI R, FEI Z F, ZHU D R, DYSON P J. MOF-based solid-state proton conductors obtained by intertwining protic ionic liquid polymers with MIL-101[J]. Small, 2023,19(41)2206999.

    9. [9]

      ZHANG S L, XIE Y X, YANG M R, ZHU D R. Porosity regulation of metal-organic frameworks for high proton conductivity by rational ligand design: Mono-versus disulfonyl-4, 4'-biphenyldicarboxylic acid[J]. Inorg. Chem. Front., 2022,9(6):1134-1142.

    10. [10]

      ZHANG H J, WANG X Z, ZHU D R, SONG Y, XU Y, XU H, SHEN X, GAO T, HUANG M X. Novel 3D lanthanide-organic frameworks with an unusual infinite nanosized ribbon[Ln3(μ3-OH)2(-CO2)6]n+ (Ln=Eu, Gd, Dy): Syntheses, structures, luminescence, and magnetic properties[J]. CrystEngComm, 2011,13(7):2586-2592.

    11. [11]

      XU H, BAO W W, XU Y, LIU X L, SHEN X, ZHU D. An unprecedented 3D/3D hetero-interpenetrated MOF built from two different nodes, chemical composition, and topology of networks[J]. CrystEngComm, 2012,14(18):5720-5722.

    12. [12]

      LUO R, XU H, GU H X, WANG X, XU Y, SHEN X, BAO W W, ZHU D R. Four MOFs with 2, 2'-dimethoxy-4, 4'-biphenyldicarboxylic acid: Syntheses, structures, topologies and properties[J]. CrystEngComm, 2014,16(5):784-796.

    13. [13]

      QIN T, GONG J, MA J H, WANG X, WANG Y H, XU Y, SHEN X, ZHU D R. A 3D MOF showing unprecedented solvent-induced single-crystal-to-single-crystal transformation and excellent CO2 adsorption selectivity at room temperature[J]. Chem. Commun., 2014,50(100):15886-15889.

    14. [14]

      WANG X, ZHAO J, ZHAO Y, XU H, SHEN X, ZHU D R, JING S. Three sra topological lanthanide-organic frameworks built from 2, 2'-dimethoxy-4, 4'-biphenyldicarboxylic acid[J]. Dalton Trans., 2015,44(19):9281-9288.

    15. [15]

      ZHAO J, WANG X, ZHAO J, LUO R, SHEN X, ZHU D R, JING S. [Ln4@Ln4] matryoshka tetrahedron: A novel secondary building unit[J]. CrystEngComm, 2016,18(6):863-867.

    16. [16]

      ZHAO J, HE X, ZHANG Y, ZHU J, SHEN X, ZHU D R. Highly water stable lanthanide metal-organic frameworks constructed from 2, 2'-disulfonyl-4, 4'-biphenyldicarboxylic acid: Syntheses, structures, and properties[J]. Cryst. Growth Des., 2017,17(10):5524-5532.

    17. [17]

      FENG S F, HE X, QIN T, ZHANG S L, ZHU D R. Four lanthanide-organic frameworks built from 2, 2'-dinitro-4, 4'-biphenyldicarboxylic acid[J]. Chinese J. Inorg. Chem., 2017,33(11):2095-2102. doi: 10.11862/CJIC.2017.241

    18. [18]

      ZHANG Y C, WU Y H, HE X, MA J H, SHEN X, ZHU D R. Topological identification of the first uninodal 8-connected lsz MOF built from 2, 2'-difluorobiphenyl-4, 4'-dicarboxylate pillars and cadmium(Ⅱ)-triazolate layers[J]. Acta Crystallogr. Sect. C, 2018,C74(3):256-262.

    19. [19]

      ZHANG S L, GAO S, WANG X, HE X, ZHAO J, ZHU D R. Two topologically different 3D Cu metal-organic frameworks assembled from the same ligands: Control of reaction conditions[J]. Acta Crystallogr. Sect. B, 2019,B75(6):1060-1068.

    20. [20]

      HE X, WANG X, XIAO T Y, ZHANG S L, ZHU D R. Creative construction of a series of chiral 3D indium-organic frameworks with a umy topology[J]. Inorg. Chem., 2021,60(1):9-13.

    21. [21]

      HE X, ZHANG S L, XIAO T Y, ZHU D R. Two metal-organic frameworks built from 2, 2'-dimethyl-4, 4'-biphenyldicarboxylic acid[J]. Chinese J. Inorg. Chem., 2021,37(5):945-952.

    22. [22]

      HE X, GAO S Y, PENG R, ZHU D R, YU F. A novel topological indium-organic framework for reversible ammonia uptake under mild conditions and catalysis[J]. J. Mater. Chem. A, 2024,12(24):14501-14507.

    23. [23]

      FURUKAWA H, KIM J, OCKWIG N W, O'KEEFFE M, YAGHI O M. Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra[J]. J. Am. Chem. Soc., 2008,130(35):11650-11661.

    24. [24]

      XIE Y, WANG T T, ZENG H P. Construction of two new mixed-ligand coordination polymers based on 2, 2'-dimethylbiphenyl-4, 4'-dicarboxylic acid[J]. Z. Anorg. Allg. Chem., 2014,640(8/9):1741-1744.

    25. [25]

      YUAN S, LU W G, CHEN Y P, ZHANG Q, LIU T F, FENG D W, WANG X, QIN J S, ZHOU H C. Sequential linker installation: Precise placement of functional groups in multivariate metal-organic frameworks[J]. J. Am. Chem. Soc., 2015,137(9):3177-3180.

    26. [26]

      YUAN S, CHEN Y P, QIN J S, LU W G, WANG X, ZHANG Q, BOSCH M, LIU T F, LIAN X Z, ZHOU H C. Cooperative cluster metalation and ligand migration in zirconium metal-organic frameworks[J]. Angew. Chem.‒Int. Edit., 2015,54(49):14696-14700.

    27. [27]

      YUAN S, ZOU L F, LI H X, CHEN Y P, QIN J S, ZHANG Q, LU W G, HALL M B, ZHOU H C. Flexible zirconium metal-organic frameworks as bioinspired switchable catalysts[J]. Angew. Chem.‒Int. Edit., 2016,55(36):10776-10780.

    28. [28]

      PAN J D, YUAN S, DU D Y, LOLLAR C, ZHANG L L, WU M Y, YUAN D Q, ZHOU H C, HONG M C. Flexible zirconium MOFs as bromine-nanocontainers for bromination reactions under ambient conditions[J]. Angew. Chem.‒Int. Edit., 2017,56(46):14622-14626.

    29. [29]

      QIN J S, YUAN S, ALSALME A, ZHOU H C. Flexible zirconium MOF as the crystalline sponge for coordinative alignment of dicarboxylates[J]. ACS Appl. Mater. Interfaces, 2017,9(39):33408-33412.

    30. [30]

      CHEN C X, QIU Q F, CAO C C, PAN M, WANG H P, JIANG J J, WEI Z W, ZHU K L, LI G Q, SU C Y. Stepwise engineering of pore environments and enhancement of CO2/R22 adsorption capacity through dynamic spacer installation and functionality modification[J]. Chem. Commun., 2017,53(83):11403-11406.

    31. [31]

      DOLGOPOLOVA E A, EJEGBAVWO O A, MARTIN C R, SMITH M D, SETYAWAN W, KARAKALOS S G, HENAGER C H, LOYE H C Z, SHUSTOVA N B. Multifaceted modularity: A key for stepwise building of hierarchical complexity in actinide metal-organic frameworks[J]. J. Am. Chem. Soc., 2017,139(46):16852-16861.

    32. [32]

      EJEGBAVWO O A, MARTIN C R, OLORUNFEMI O A, LEITH G A, LY R T, RICE A M, DOLGOPOLOVA E A, SMITH M D, KARAKALOS S G, BIRKNER N, POWELL B A, PANDEY S, KOCH R J, MISTURE S T, LOYE H C Z, PHILLPOT S R, BRINKMAN K S, SHUSTOVA N B. Thermodynamics and electronic properties of heterometallic multinuclear actinide-containing metal-organic frameworks with "structural memory"[J]. J. Am. Chem. Soc., 2019,141(29):11628-11640.

    33. [33]

      PANG J D, YUAN S, QIN J S, LOLLAR C T, HUANG N, LI J L, WANG Q, WU M Y, YUAN D Q, HONG M C, ZHOU H C. Tuning the ionicity of stable metal-organic frameworks through ionic linker installation[J]. J. Am. Chem. Soc., 2019,141(7):3129-3136.

    34. [34]

      LI J L, YUAN S, QIN J S, PANG J D, ZHANG P, ZHANG Y M, HUANG Y Y, DRAKE H F, LIU W R, ZHOU H C. Stepwise assembly of turn-on fluorescence sensors in multicomponent metal-organic frameworks for in vitro cyanide detection[J]. Angew. Chem.‒Int. Edit., 2020,59(24):9319-9323.

    35. [35]

      CASTNER A T, JOHNSON B A, COHEN S M, OTT S. Mimicking the electron transport chain and active site of[FeFe] hydrogenases in one metal-organic framework: Factors that influence charge transport[J]. J. Am. Chem. Soc., 2021,143(21):7991-7999.

    36. [36]

      ZENG Z, WANG W, XIONG X H, ZHU N X, XIONG Y Y, WEI Z W, JIANG J J. Flexible microporous copper(Ⅱ) metal-organic framework toward the storage and separation of C1—C3 hydrocarbons in natural gas[J]. Inorg. Chem., 2021,60(12):8456-8460.

    37. [37]

      HANNA S L, CHHEDA S, ANDERSON R, RAY D, MALLIAKAS C D, KNAPP J G, OTAKE K I, LI P, LI P H, WANG X J, WASSON M C, ZOSEL K, EVANS A M, ROBISON L, ISLAMOGLU T, ZHANG X, DICHTEL W R, STODDART J F, GOMEZ-GUALDRON D A, GAGLIARDI L, FARHA O K. Discovery of spontaneous de-interpenetration through charged point-point repulsions[J]. Chem, 2022,8(1):225-242.

    38. [38]

      PARK K C, KITTIKHUNNATHAM P, LIM J, THAGGARD G C, LIU Y, MARTIN C R, LEITH G A, TOLER D J, TA A T, BIRKNER N, LEHMAN-ANDINO I, HERNANDEZ-JIMENEZ A, MORRISON G, AMOROSO J W, LOYE H C Z, DIPRETE D P, SMITH M D, BRINKMAN K S, PHILLPOT S R, SHUSTOVA N B. f-Block MOFs: A pathway to heterometallic transuranics[J]. Angew. Chem.‒Int. Edit., 2023,62(5)e202216349.

    39. [39]

      LIM J, PARK K C, THAGGARD G C, LIU Y, KANKANAMALAGE B K P M, TOLER D J, TA A T, KITTIKHUNNATHAM P, SMITH M D, PHILLPOT S R, SHUSTOVA N B. Friends or foes: Fundamental principles of Th-organic scaffold chemistry using Zr-analogs as a guide[J]. J. Am. Chem. Soc., 2024,146(17):12155-12166.

    40. [40]

      XIONG Y Y, CHEN C X, PHAM T, WEI Z W, FORREST K A, PAN M, SU C Y. Dynamic spacer installation of multifunctionalities into metal-organic frameworks for spontaneous one-step ethylene purification from a ternary C2-hydrocarbons mixture[J]. CCS Chem., 2024,6(1):241-254.

    41. [41]

      DOLOMANOV O V, BOURHIS L J, GILDEA R J, HOWARD J A K, PUSCHMANN H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Cryst., 2009,42(2):339-341.

    42. [42]

      SHELDRICK G M. A short history of SHELX[J]. Acta Crystallogr. Sect. A, 2008,A64(1):112-122.

    43. [43]

      ALVAREZ S, ALEMANY P, CASANOVA D, CIRERA J, LLUNELL M, AVNIR D. Shape maps and polyhedral interconversion paths in transition metal chemistry[J]. Coord. Chem. Rev., 2005,249(17/18):1693-1708.

    44. [44]

      LIU Q, ZHANG L Y, BAO Y M, ZHANG N, ZHANG J Y, XING Y Y, DENG W, LIU Z J. Structures and catalytic oxidative coupling reaction of four Co-MOFs modified with R-isophthalic acid (R=H, OH and COOH) and trigonal ligands[J]. CrystEngComm, 2021,23(43):7590-7601.

    45. [45]

      CAO W W, LI H Y, TIAN L. Exploring the synthesis, structure, and properties of a 3D Mn-MOF based on 4, 6-bistriazole isophthalic acid[J]. J. Mol. Struct., 2024,1295(2)136721.

    46. [46]

      ZHOU C C, LIU H T, DING L, LU J, WANG S N, LI Y W. Single-crystal-to-single-crystal transformations among three Mn-MOFs containing different water molecules induced by reaction time: Crystal structures and proton conductivities[J]. Dalton Trans., 2021,50(32):11077-11090.

    47. [47]

      BURROWS A D, FROST C G, KANDIAH M, KEENAN L L, MAHON M F, SAVARESE T L, WARREN J E. The effect of reaction conditions on the nature of cadmium 1, 3, 5-benzenetricarboxylate metal-organic frameworks[J]. Inorg. Chim. Acta, 2011,366(1):303-309.

    48. [48]

      SUN E X, FANG H Y, JIANG J J, ZHU D R. Syntheses, crystal structures, Hirshfeld surface analyses and fluorescence of two binuclear complexes with unsymmetrical phenol-based compartmental ligands[J]. J. Coord. Chem., 2023,76(7/8):946-959.

    49. [49]

      WANG T, SONG H J, ZHUANG R, ZHU D R. Syntheses, crystal structures, Hirshfeld surface analyses and magnetic property of a new dinuclear nickel(Ⅱ) and two mononuclear copper(Ⅱ) complexes with triaryltriazoles[J]. J. Coord. Chem., 2024,77(22/23/24):2844-2855.

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    3. [3]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    4. [4]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    5. [5]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    6. [6]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    7. [7]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    8. [8]

      Yukun CHENKexin FENGBolun ZHANGWentao SONGJianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448

    9. [9]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    10. [10]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    11. [11]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    12. [12]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    13. [13]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    14. [14]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    15. [15]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    18. [18]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(0)
  • Abstract views(2)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return