Citation: Wei GAO, Meiqi SONG, Xuan REN, Jianliang BAI, Jing SU, Jianlong MA, Zhijun WANG. A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112 shu

A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO

Figures(7)

  • In this study, a self-calibrating near-infrared fluorescence probe was designed and synthesized based on the dual-fluorophore strategy utilizing methylene blue and coumarin. The probe utilized methylene blue (emission spectrum range: 640-740 nm) and coumarin fluorophore (emission spectrum range: 440-600 nm) as signal output units, thereby achieving effective spectral separation and highly selective detection of HClO. Under physiological pH conditions, HClO triggers an oxidation-cleavage reaction, releasing methylene blue and coumarin, which emit distinct red and green fluorescence, respectively. This dualemission feature enabled rapid HClO detection with two-channel detection limits of 25.13 nmol·L-1 (green channel) and 31.55 nmol·L-1 (red channel). Furthermore, in cell imaging experiments, this probe demonstrated excellent cell membrane permeability and low cytotoxicity, successfully enabling the monitoring of both endogenous and exogenous HClO in living cells. By incorporating a two-channel self-calibration system, the probe effectively mitigated signal variations caused by instrumental or environmental interference, substantially improving detection sensitivity and reliability.
  • 加载中
    1. [1]

      SHANGGUAN L A, WANG J, QIAN X, WU Y Q, LIU Y. Mitochondria-targeted ratiometric chemodosimeter to detect hypochlorite acid for monitoring the drug-damaged liver and kidney[J]. Anal. Chem., 2022,94:11881-11888. doi: 10.1021/acs.analchem.2c02431

    2. [2]

      ZHAO G, LV C C, YANG X K, ZHAO X L, XIE F W. Levonorgestrel protected Au10 cluster for hypochlorite sensing in living organisms[J]. Anal. Chim. Acta, 2024,1320343033. doi: 10.1016/j.aca.2024.343033

    3. [3]

      XIE J H, XING H Y, MENG L, ZHAO Y, ZENG Q, XIAO Q, LI N B, XUE P, LUO H Q. Engineering HClO ratiometric fluorescent probe by inducing molecular aggregation to suppress TICT formation for monitoring drug-induced liver injury[J]. Anal. Chem., 2024,97(1):220-228.

    4. [4]

      MA J T, KONG X T, ZHAO M T, JIAO Z L, XIE H, SI J, LI H, ZHANG Z X. A dual-functional NIR fluorescence probe for detecting hypochlorous acid and bisulfite in biosystem[J]. Anal. Chim. Acta, 2024,1320342993. doi: 10.1016/j.aca.2024.342993

    5. [5]

      FORTIBUI M M, PARK C, KIM N Y, KIM T H, LEE M H. Dual-emissive detection of ATP and hypochlorite ions for monitoring inflammation-driven liver injury in vitro and in vivo[J]. Anal. Chem., 2024,96(23):9408-9415. doi: 10.1021/acs.analchem.4c00270

    6. [6]

      YAO L L, SONG H J, YIN C X, HUO F J. An ICT-switched fluorescent probe for visualizing lipid and HClO in lipid droplets during ferroptosis[J]. Chem. Commun., 2024,60(7):835-838. doi: 10.1039/D3CC05679A

    7. [7]

      SHAO K Y, GUO L J, ZHONG Y P, ZHANG L L, LU Z T, WANG D. Carbon quantum dots for rapid and ratiometric fluorescence determination of hypochlorite[J]. ACS Appl. Nano Mater., 2024,7(8):8645-8654. doi: 10.1021/acsanm.3c06131

    8. [8]

      WANG X, WANG H, DUAN J, SUN Q, ZHANG C L, XU L, LIU Z P. Phenothiazine-hemicyanine hybrid as a near-infrared fluorescent probe for ratiometric imaging of hypochlorite in vivo[J]. Sens. Actuators B-Chem., 2024,407135453. doi: 10.1016/j.snb.2024.135453

    9. [9]

      CHAO M Z, ZHANG H T, HU Q F, MA S H, CUI X B, YU X. AIE-based fluorescent probe designed with xanthone as a π-bridge for detecting of ClO- in pericarp and living cells[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2025,324124984. doi: 10.1016/j.saa.2024.124984

    10. [10]

      NI J X, YU L C, WANG Y X, YANG T, BAI Y Q, ZHENG B W, LIANG M S, YE X X, QUAN Y Y, LIN F F. Win-win integration: A mitochondria targeted AIE photosensitizer for hypochlorite detection and type Ⅰ & type Ⅱ photodynamic therapy[J]. Anal. Chim. Acta, 2024,1320343035. doi: 10.1016/j.aca.2024.343035

    11. [11]

      GU Y, ZHENG X, CHEN Z, TENG R M, ZHANG Y H, LI H, DING C P, HUANG Y J. Fluorescent-colorimetric dual signal ratio sensor with AuNRs@UCNPs superstructure nanoprobe for accurate hypo-chlorite detection[J]. Sens. Actuators B-Chem., 2024,419136384. doi: 10.1016/j.snb.2024.136384

    12. [12]

      ZHANG Q L, ZHOU X, YU Q, SHAN X F, ZHANG Q, ZHANG Z, SHEN LY, REDSHAW C, XU H, ZHU B X. 2-Hydroxynaphthalenyl hemicarbocyanine dyes: Hypochlorite response and UV-catalysed induction of the formation of chlorinated hemicarbocyanine-like naphtho[2, 1-b] furans[J]. Sens. Actuators B-Chem., 2025,426137105. doi: 10.1016/j.snb.2024.137105

    13. [13]

      LIU Y P, GUI Z R, ZHANG Z W, WANG S K, LANG W, LIU Y Z, CAO Q Y. A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO-[J]. Chin. Chem. Lett., 2025,36(2)109769. doi: 10.1016/j.cclet.2024.109769

    14. [14]

      LIAO C, SHAN F, ZHU Y, MI H D, LIU Y H, SONG Q, WANG C F, WANG L Y, WANG Z Y. Self-ratiometric photoluminescence carbonized polymer dots with Junas structure for hypochlorite selective sensing[J]. Sens. Actuators B-Chem., 2024,420136453. doi: 10.1016/j.snb.2024.136453

    15. [15]

      YANG J Y, CHEN Z M, YANG Y X, ZHENG B B, ZHU Y, WU F P, XIONG H. Visualization of endogenous hypochlorite in drug-induced liver injury mice via a bioluminescent probe combined with firefly luciferase mRNA-loaded lipid nanoparticles[J]. Anal. Chem., 2024,96(18):6978-6985. doi: 10.1021/acs.analchem.4c00008

    16. [16]

      KIM J, KIM Y. A water-soluble sulfonate-BODIPY based fluorescent probe for selective detection of HOCl/OCl- in aqueous media[J]. Analyst, 2014,139(12):2986-2989. doi: 10.1039/C4AN00466C

    17. [17]

      HU J J, WONG N K, GU Q S, BAI X Y, YE S, YANG D. HKOCl-2 series of green BODIPY-based fluorescent probes for hypochlorous acid detection and imaging in live cells[J]. Org. Lett., 2014,16(13):3544-3547. doi: 10.1021/ol501496n

    18. [18]

      HU J J, WONG N K, LU M Y, CHEN X M, YE S, ZHAO A Q, GAO P, KAO R Y T, SHEN J G, YANG D. HKOCl-3: A fluorescent hypochlorous acid probe for live-cell and in vivo imaging and quantitative application in flow cytometry and a 96-well microplate assay[J]. Chem. Sci., 2016,7(3):2094-2099. doi: 10.1039/C5SC03855C

    19. [19]

      WANG Y T, CHENG X Y, YIN N, WANG M X, QIN G X, TANG J L, ZHANG Y L, XU Q L. A hypochlorite-activated theranostic prodrug for selective imaging of high myeloperoxidase expression acute myeloid leukemia cells and drug release[J]. Anal. Chem., 2024,30:12238-12245.

    20. [20]

      ZHU B C, WU L, ZHANG M, WANG Y W, LIU C Y, WANG Z K, DUAN Q X, JIA P. A highly specific and ultrasensitive near-infrared fluorescent probe for imaging basal hypochlorite in the mitochondria of living cells[J]. Biosens. Bioelectron., 2018,107:218-223. doi: 10.1016/j.bios.2018.02.023

    21. [21]

      YUAN Q, ZHAO Z M, ZHANG Y R, SU L, MIAO J Y, ZHAO B X. A lysosome-targeted ratiometric fluorescent probe for detection of hypochlorous acid in living cells[J]. Sens. Actuators B-Chem., 2017,247:736-741. doi: 10.1016/j.snb.2017.03.049

    22. [22]

      GUI L, YAN J, ZHAO J, WANG S Y, JI Y Y, LIU J, WU J S, YUAN K, LIU H, DENG D W, YUAN Z W. Hypochlorite activatable ratiometric fluorescent probe based on endoplasmic reticulum stress for imaging of atherosclerosis[J]. Biosens. Bioelectron., 2023,240115660. doi: 10.1016/j.bios.2023.115660

    23. [23]

      ZHAO W Q, ZHANG S T, YAN J L, XU P Y, LI B, ZHANG Y M, LI J L, WU S P. A dual-emission fluorescent probe for simultaneous detection of singlet oxygen and hypochlorous acid in lipid droplets[J]. Sens. Actuators B-Chem., 2024,412135813. doi: 10.1016/j.snb.2024.135813

    24. [24]

      ZHANG P S, WANG H, HONG Y X, YU M L, ZENG R J, LONG Y F, CHEN J. Selective visualization of endogenous hypochlorous acid in zebrafish during lipopolysaccharide-induced acute liver injury using a polymer micelles-based ratiometric fluorescent probe[J]. Biosens. Bioelectron., 2018,99:318-324. doi: 10.1016/j.bios.2017.08.001

    25. [25]

      YUAN L, WANG L, AGRAWALLA B K, PARK S J, ZHU H, SIVARAMAN B, PENG J J, XU Q H, CHANG Y T. Development of targetable two-photon fluorescent probes to image hypochlorous acid in mitochondria and lysosome in live cell and inflamed mouse model[J]. J. Am. Chem. Soc., 2015,137(18):5930-5938. doi: 10.1021/jacs.5b00042

    26. [26]

      HE Q G, GUO T, LAN M H, ZHAO S J, HAN S H, YAO C Y, SONG X Z. Dual-ratiometric fluorescent probes for monitoring ClO- and polarity dynamics in ferroptosis[J]. Sens. Actuators B ‒ Chem., 2024,415136030. doi: 10.1016/j.snb.2024.136030

    27. [27]

      BI W, ZHAO X Y, YANG X J, YUAN X S, LIN Y F, XU K M, LIU L, ZENG H Y, DU G B, ZHANG L P. Ratiometric fluorescent probe with AIE characteristics for hypochlorite detection and biological imaging[J]. Spectroc. Acta Pt. A ‒ Molec. Biomolec. Spectr., 2024,323124904. doi: 10.1016/j.saa.2024.124904

    28. [28]

      SUN M T, YU H, ZHU H J, MA F, ZHANG S, HUANG D J, WANG S H. Oxidative cleavage-based near-infrared fluorescent probe for hypochlorous acid detection and myeloperoxidase activity evaluation[J]. Anal. Chem., 2014,86(1):671-677. doi: 10.1021/ac403603r

    29. [29]

      XU Q, HEO C H, KIM J A, LEE H S, HU Y, KIM D, SWAMY K M K, KIM G, NAM S J, KIM H M, YOON J. A selective imidazoline-2-thione-bearing two-photon fluorescent probe for hypochlorous acid in mitochondria[J]. Anal. Chem., 2016,88(12):6615-6620. doi: 10.1021/acs.analchem.6b01738

    30. [30]

      YE Q, XU K, MENG Z Y, LI X Y, WANG Z L, WANG S F. Construction of a novel isopinocamphone-based fluorescent probe for rapid and specific detection of ClO- and its application in environmental analysis and biological imaging[J]. New J. Chem., 2024,48(32):14182-14190. doi: 10.1039/D4NJ02375G

  • 加载中
    1. [1]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    2. [2]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    3. [3]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    4. [4]

      Jiayu ZengMinhui LiuTing YangJia HuangSongjiao LiWanting ZhangDan ChengLongwei HeJia Zhou . Two-dimensional design strategy to construct smart dual-responsive fluorescent probe for the precise tracking of ischemic stroke. Chinese Chemical Letters, 2025, 36(5): 110166-. doi: 10.1016/j.cclet.2024.110166

    5. [5]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    6. [6]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    7. [7]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    8. [8]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    9. [9]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    10. [10]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    11. [11]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    12. [12]

      Pei HuangWeijie ZhangJunping WangFangjun HuoCaixia Yin . Rapid and specific fluorescent probe visualizes dynamic correlation of Cys and HClO in OGD/R. Chinese Chemical Letters, 2025, 36(1): 109778-. doi: 10.1016/j.cclet.2024.109778

    13. [13]

      Lanyun ZhangWeisi WangYu-Qiang ZhaoRui HuangYuxun LuYing ChenLiping DuanYing Zhou . Mechanism study of the molluscicide candidate PBQ on Pomacea canaliculata using a viscosity-sensitive fluorescent probe. Chinese Chemical Letters, 2025, 36(1): 109798-. doi: 10.1016/j.cclet.2024.109798

    14. [14]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    15. [15]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    16. [16]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    17. [17]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    18. [18]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    19. [19]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    20. [20]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

Metrics
  • PDF Downloads(0)
  • Abstract views(227)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return