Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups
- Corresponding author: Anyang LI, liay@nwu.edu.cn Wenyuan WANG, wangwy@nwu.edu.cn
Citation:
Wenke ZHENG, Ce LIU, Wei CHEN, Hongshan KE, Fanlong ZENG, Yibo LEI, Anyang LI, Wenyuan WANG. Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(7): 1285-1293.
doi:
10.11862/CJIC.20250095
QIN X, LIU X W, HUANG W, BETTINELLI M, LIU X G. Lanthanide-activated phosphors based on 4f-5d optical transitions: Theoretical and experimental aspects[J]. Chem. Rev., 2017, 117(5): 4488-4527
doi: 10.1021/acs.chemrev.6b00691
SZALAY P G, MÜLLER T, GIDOFALVI G, LISCHKA H, SHEPARD R. Multiconfiguration self-consistent field and multireference configuration interaction methods and applications[J]. Chem. Rev., 2012, 112(1): 108-181
doi: 10.1021/cr200137a
WOODRUFF D N, WINPENNY R E P, LAYFIELD R A. Lanthanide single-molecule magnets[J]. Chem. Rev., 2013, 113(7): 5110-5148
doi: 10.1021/cr400018q
POWER P P. Stable, two-coordinate, open shell (d0-d9) transition metal complexes[J]. Comments on Inorganic Chem., 1989, 8(5): 177-202
doi: 10.1080/02603598908035794
KAYS D L. Recent developments in transition metal diaryl chemistry[J]. Dalton Trans., 2011, 40(4): 769-778
doi: 10.1039/C0DT01247E
POWER P P. Stable two-coordinate, open-shell (d1-d9) transition metal complexes[J]. Chem. Rev., 2012, 112(6): 3482-3507
doi: 10.1021/cr2004647
HARGITTAI M. The molecular geometry of gas-phase metal halides[J]. Coord. Chem. Rev., 1988, 91: 35-88
doi: 10.1016/0010-8545(88)80013-4
POWER P P. Some highlights from the development and use of bulky monodentate ligands[J]. J. Organomet. Chem., 2004, 689(24): 3904-3919
doi: 10.1016/j.jorganchem.2004.06.010
FISCHER R C, POWER P P. π-Bonding and the lone pair effect in multiple bonds involving heavier main group elements: Developments in the new millennium[J]. Chem. Rev., 2010, 110(7): 3877-3923
doi: 10.1021/cr100133q
HADLINGTON T J. Heavier tetrylene- and tetrylyne-transition metal chemistry: It′s no carbon copy[J]. Chem. Soc. Rev., 2024
FANG W, ZHU Q, ZHU C Q. Recent advances in heterometallic clusters with f-block metal-metal bonds: Synthesis, reactivity and applications[J]. Chem. Soc. Rev., 2022, 51(20): 8434-8449
doi: 10.1039/D2CS00424K
NESTEROV V, REITER D, BAG P, FRISCH P, HOLZNER R, PORZELT A, INOUE S. NHCs in main group chemistry[J]. Chem. Rev., 2018, 118(19): 9678-9842
doi: 10.1021/acs.chemrev.8b00079
CAI I C, ZIEGLER M S, BUNTING P C, NICOLAY A, LEVINE D S, KALENDRA V, SMITH P W, LAKSHMI, K V, TILLEY T D. Monomeric, divalent vanadium bis(arylamido) complexes: Linkage isomerism and reactivity[J]. Organometallics, 2019, 38(7): 1648-1663
doi: 10.1021/acs.organomet.9b00134
CHEN H, BARTLETT R A, DIAS H V R, OLMSTEAD M M, POWER P P. The use of very crowded silylamide ligands —N(SiMenPh3-n)2 (n=0, 1, or 2) to synthesize crystalline, two-coordinate, derivatives to manganese(Ⅱ), iron(Ⅱ), and cobalt(Ⅱ) and the free ion [Ph3SiNSiPh3]-[J]. J. Am. Chem. Soc., 1989, 111(12): 4338-4345
doi: 10.1021/ja00194a028
MERRILL W A, STICH T A, BRYNDA M, YEAGLE G J, FETTINGER J C, DE HONG R, REIFF W M, SCHULZ C E, BRITT R D, POWER P P. Direct spectroscopic observation of large quenching of first-order orbital angular momentum with bending in monomeric, two-coordinate Fe(Ⅱ) primary amido complexes and the profound magnetic effects of the absence of Jahn- and Renner-Teller distortions in rigorously linear coordination[J]. J. Am. Chem. Soc., 2009, 131(35): 12693-12702
doi: 10.1021/ja903439t
REIFF W M, SCHULZ C E, WHANGBO M H, SEO J I, LEE Y S, POTRATZ G R, SPICER C W, GIROLAMI G S. Consequences of a linear two-coordinate geometry for the orbital magnetism and Jahn-Teller distortion behavior of the high spin iron(Ⅱ) complex Fe[N(t-Bu)2]2[J]. J. Am. Chem. Soc., 2009, 131(2): 404-405
doi: 10.1021/ja806660f
BOYNTON J N, MERRILL W A, REIFF W M, FETTINGER J C, POWER P P. Two-coordinate, quasi-two-coordinate, and distorted three coordinate, t-shaped chromium(Ⅱ) amido complexes: Unusual effects of coordination geometry on the lowering of ground state magnetic moments[J]. Inorg. Chem., 2012, 51(5): 3212-3219
doi: 10.1021/ic202661n
BRYAN A M, MERRILL W A, REIFF W M, FETTINGER J C, POWER P P. Synthesis, structural, and magnetic characterization of linear and bent geometry cobalt(Ⅱ) and nickel(Ⅱ) amido complexes: Evidence of very large spin-orbit coupling effects in rigorously linear coordinated Co2+[J]. Inorg. Chem., 2012, 51(6): 3366-3373
doi: 10.1021/ic2012414
LIN C Y, GUO J D, FETTINGER J C, NAGASE S, GRANDJEAN F, LONG G J, CHILTON N F, POWER P P. Dispersion force stabilized two-coordinate transition metal-amido complexes of the —N(SiMe3)Dipp (Dipp=C6H3-2, 6-Prⅰ2) ligand: Structural, spectroscopic, magnetic, and computational studies[J]. Inorg. Chem., 2013, 52(23): 13584-13593
doi: 10.1021/ic402105m
CHILTON N F, GOODWIN C A P, MILLS D P, WINPENNY R E P. The first near-linear bis(amide) f-block complex: A blueprint for a high temperature single molecule magnet[J]. Chem. Commun., 2015, 51(1): 101-103
doi: 10.1039/C4CC08312A
GOODWIN C A P, TUNA F, MCLNNES E J L, LIDDLE S T, MCMASTER J, VITORICA-YREZABAL I J, MILLS D P. [UⅢ{N(SiMe2tBu)2}3]: A structurally authenticated trigonal planar actinide complex[J]. Chem.‒Eur. J., 2014, 20(45): 14579-14583
doi: 10.1002/chem.201404864
ZHANG P, ZHANG L, WANG C, XUE S F, LIN S Y, TANG J K. Equatorially coordinated lanthanide single ion magnets[J]. J. Am. Chem. Soc., 2014, 136(12): 4484-4487
doi: 10.1021/ja500793x
HICKS J, UNDERHILL E J, KEFALIDIS C E, MARON L, JONES C. A mixed-valence tri-zinc complex, [LZnZnZnL] (L=bulky amide), bearing a linear chain of two-coordinate zinc atoms[J]. Angew. Chem., 2015, 127(34): 10138-10142
doi: 10.1002/ange.201504818
OLMSTEAD M M, POWER P P, SHONER S C. Three-coordinate iron complexes: X-ray structural characterization of the iron amide-bridged dimers [Fe(NR2)2]2 (R=SiMe3, C6H5) and the adduct Fe[N(SiMe3)2]2(THF) and determination of the association energy of the monomer Fe{N(SiMe3)2}2 in solution[J]. Inorg. Chem., 1991, 30(11): 2547-2551
doi: 10.1021/ic00011a017
HICKS J, JONES C. Extremely bulky amido first row transition metal(Ⅱ) halide complexes: Potential precursors to low coordinate metal-metal bonded systems[J]. Inorg. Chem., 2013, 52(7): 3900-3907
doi: 10.1021/ic302672a
LI Y Z, ZENG Z P, GUO Y, LIU X M, ZHANG Y Q, OUYANG Z W, WANG Z X, LIU X Y, ZHENG Y Z. Synergy of magnetic anisotropy and ferromagnetic interaction triggering a dimeric Cr(Ⅱ) zero-Field single-molecule magnet[J]. Inorg. Chem., 2023, 62(16): 6297-6305
doi: 10.1021/acs.inorgchem.2c04359
GUO Y, XIA Z Q, LIU J J, YU J X, YAO S L, SHI W Q, HU K Q, CHEN S P, WANG Y Y, LI A Y, DRIESS M, WANG W Y. A tetra-amido-protected Ge5-spiropentadiene[J]. J. Am. Chem. Soc., 2019, 141(49): 19252-19256
doi: 10.1021/jacs.9b10946
QIN Y Y, KANG Y M, ZHANG L, SUN J P, ZHANG Z J, XU J L, ZENG F L, LI A Y, WANG W Y, SHI W Q. Germylene-Fe complexes caused by heterometallic coupling and investigation into the 3d-4p bonding[J]. Chin. Chem. Lett., 2024, 35(3): 108691
doi: 10.1016/j.cclet.2023.108691
MCNEIL A J, COLLUM D B. Reversible enolization of β-amino carboxamides by lithium hexamethyldisilazide[J]. J. Am. Chem. Soc., 2005, 127(15): 5655-5661
doi: 10.1021/ja043470s
WOLTORNIST R A, COLLUM D B. Sodium hexamethyldisilazide: Using 15N-29Si scalar coupling to determine aggregation and solvation states[J]. J. Am. Chem. Soc., 2020, 142(15): 6852-6855
doi: 10.1021/jacs.0c00331
ELSCHENBROICH C. Organometallics[M]. 3rd ed. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2006: 141
BARTLETT R A, POWER P P. Two-coordinate, nonlinear, crystalline d6 and d7 complexes: Syntheses and structures of M{N(SiMePh2)2}2, M=Fe or Co[J]. J. Am. Chem. Soc., 1987, 109(24): 7563-7564
doi: 10.1021/ja00258a069
CHEN H, BARTLETT R A, OLMSTEAD M M, POWER P P, SHONER S C. Series of two-coordinate and quasi-two-coordinate transition-metal complexes: Synthesis, structural, and spectroscopic studies of sterically demanding borylamide ligands —NRBR′2 (R=Ph, R′=Mes, Xyl; R=R′=Mes), their lithium salts, Li(Et2O)2NRBR′2, and their transition-metal derivatives, M(NPhBMes2)2 (M=Cr, Co, Ni), Co(NPhBXyl2)2 and M(NMesBMes2)2 (M=Cr→Ni)[J]. J. Am. Chem. Soc., 1990, 112(3): 1048-1055
doi: 10.1021/ja00159a025
AU-YEUNG H Y, LAM C H, LAM C K, WONG W Y, LEE H K. Unusual iron(Ⅱ) and cobalt(Ⅱ) complexes derived from monodentate arylamido ligands[J]. Inorg. Chem., 2007, 46(19): 7695-7697
doi: 10.1021/ic700850e
ZHANG Y, SUO B B, WANG Z K, ZHANG N, LI Z D, LEI Y B, ZOU W L, GAO J, PENG D L, PU Z C, XIAO Y L, SUN Q M, WANG F, MA Y T, WANG X P, GUO Y, LIU W J. BDF: A relativistic electronic structure program package[J]. J. Chem. Phys., 2020, 152(6): 064113
doi: 10.1063/1.5143173
LEI Y B, SUO B B, LIU W J. iCAS: Imposed automatic selection and localization of complete active spaces[J]. J. Chem. Theory Comput., 2021, 17(8): 4846-4859
doi: 10.1021/acs.jctc.1c00456
ANDERSSON K, ROOS B O. Excitation energies in the nickel atom studied with the complete active space SCF method and second-order perturbation theory[J]. Chem. Phys. Lett., 1992, 191(6): 507-514
doi: 10.1016/0009-2614(92)85581-T
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
Ming Li , Zhaoyin Li , Mengzhu Liu , Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085
Quanguo Zhai , Peng Zhang , Wenyu Yuan , Ying Wang , Shu'ni Li , Mancheng Hu , Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
Xiuyun Wang , Jiashuo Cheng , Yiming Wang , Haoyu Wu , Yan Su , Yuzhuo Gao , Xiaoyu Liu , Mingyu Zhao , Chunyan Wang , Miao Cui , Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
Qingjun PAN , Zhongliang GONG , Yuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
Ming ZHENG , Yixiao ZHANG , Jian YANG , Pengfei GUAN , Xiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388
Thermal ellipsoids are drawn at the 30% probability level, except for the C atoms of the iPr groups at the silyl groups at nitrogen; All hydrogen atoms are omitted for clarity; Selected bond lengths (nm) and angles(°): 2-THF: Si1—N1 0.167 5(3), Si2—N1 0.166 2(3), Na1—N1 0.229 4(3), Na1—O1 0.225 5(3), Si1—N1—Si2 145.85(19), Si1—N1—Na1 105.93(15), Si2—N1—Na1 108.03(16); 2-Tol: Si1—N1 0.166 99(16), Si2—N1 0.167 02(17), Na1—N1 0.226 16(19), Si1—N1—Si2 143.97(11), Si1—N1—Na1 105.71(8), Si2—N1—Na1 110.24(8).
Thermal ellipsoids are drawn at the 30% probability level, except for the C atoms of the iPr groups at the silyl groups at nitrogen; All hydrogen atoms are omitted for clarity; Symmetric code: ⅰ 2-x, 1-y, 1-z; Selected bond lengths (nm) and angles(°): 3: Fe1—N1 0.193 16(13), Fe1—N2 0.192 70(14), N1—Si3 0.173 50(13), N1—Si4 0.174 31(13), N2—Si1 0.174 34(14), N2—Si2 0.173 62(14), N1—Fe1—N2 178.10(6), Si1—N1—Si2 134.91(8), Si1—N2—Fe1 111.80(7); 4: Cr1—Cl1 0.236 78(8), Cr1—Cl1ⅰ 0.233 45(8), Cr1—N1 0.193 47(19), N1—Si1 0.173 73(19), N1—Si2 0.173 73(19), Cr1—Cl1—Cr1ⅰ 87.79(3), Cl1—Cr1—Cl1ⅰ 92.21(3), N1—Cr1—Cl1 145.32(6), N1—Cr1—Cl1ⅰ 122.45(6), Si1—N1—Cr1 107.02(10), Si1—N1—Si2 138.48(12).