Citation: Wenke ZHENG, Ce LIU, Wei CHEN, Hongshan KE, Fanlong ZENG, Yibo LEI, Anyang LI, Wenyuan WANG. Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095 shu

Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups

Figures(7)

  • The ultra-bulky and stable monodentate amino groups can provide effective kinetic protection during the preparation of low-coordinate transition metal complexes, thereby preventing oligomerization. In this work, the ultra-bulky sodium hexa-isopropyl disilylamide (2) was synthesized for the first time by the reaction of silylamine and sodium amide, and the crystal structures of 2-THF and 2-Tol, which are complexes of 2 coordinated by tetrahydrofuran (THF) or toluene (Tol), respectively, were characterized. Then, the diamino iron [Fe(Ⅱ)(N(SiPr3)2)2] (3) and diamino dichloro-bis-chromium [Cr(Ⅱ)(N(SiiPr3)2)Cl]2 (4) were synthesized through the salt metathesis reaction of 2 with the corresponding transition metal halides FeCl2 and CrCl2. Due to the steric hindrance of the ultra-bulky amino groups, complex 3 presents a nearly linear geometry, with the N—Fe—N bond angle of 178.10°. Complex 4 is a dimer of monoamino chromium(Ⅱ) chloride; the three-coordinate Cr(Ⅱ) ions form a {Cr2Cl2} rhombic core via two Cl-bridges. The improved iCAS method (imposed automatic selection and localization of complete active spaces) was used to calculate the molecular orbitals of 3 and 4 to logically describe the strongly correlated systems of electrons of the low-coordinate sphere of transition metals. The calculation shows that the bonding contribution of 3 mainly consists of the two Fe—N σ bonds, and the charge of Fe (+1.03) and N (-1.21) confirms a strong ionic coordination environment. The Fe—N π-bonding is not evident. The quintuplet high-spin Fe has one doubly occupied orbital and four singly occupied orbitals, originating from the 3d orbitals of Fe. The six fully occupied molecular orbitals of 4 correspond to two Cr—N σ bonds, two p-type lone pairs on Cl atoms, and two p-type lone pairs on N atoms. Two Cr atoms have eight high-energy d electrons, each in a singly occupied active orbital, and one of them exhibits Cr…Cr interaction.
  • 加载中
    1. [1]

      QIN X, LIU X W, HUANG W, BETTINELLI M, LIU X G. Lanthanide-activated phosphors based on 4f-5d optical transitions: Theoretical and experimental aspects[J]. Chem. Rev., 2017, 117(5): 4488-4527  doi: 10.1021/acs.chemrev.6b00691

    2. [2]

      SZALAY P G, MÜLLER T, GIDOFALVI G, LISCHKA H, SHEPARD R. Multiconfiguration self-consistent field and multireference configuration interaction methods and applications[J]. Chem. Rev., 2012, 112(1): 108-181  doi: 10.1021/cr200137a

    3. [3]

      WOODRUFF D N, WINPENNY R E P, LAYFIELD R A. Lanthanide single-molecule magnets[J]. Chem. Rev., 2013, 113(7): 5110-5148  doi: 10.1021/cr400018q

    4. [4]

      POWER P P. Stable, two-coordinate, open shell (d0-d9) transition metal complexes[J]. Comments on Inorganic Chem., 1989, 8(5): 177-202  doi: 10.1080/02603598908035794

    5. [5]

      KAYS D L. Recent developments in transition metal diaryl chemistry[J]. Dalton Trans., 2011, 40(4): 769-778  doi: 10.1039/C0DT01247E

    6. [6]

      POWER P P. Stable two-coordinate, open-shell (d1-d9) transition metal complexes[J]. Chem. Rev., 2012, 112(6): 3482-3507  doi: 10.1021/cr2004647

    7. [7]

      HARGITTAI M. The molecular geometry of gas-phase metal halides[J]. Coord. Chem. Rev., 1988, 91: 35-88  doi: 10.1016/0010-8545(88)80013-4

    8. [8]

      POWER P P. Some highlights from the development and use of bulky monodentate ligands[J]. J. Organomet. Chem., 2004, 689(24): 3904-3919  doi: 10.1016/j.jorganchem.2004.06.010

    9. [9]

      FISCHER R C, POWER P P. π-Bonding and the lone pair effect in multiple bonds involving heavier main group elements: Developments in the new millennium[J]. Chem. Rev., 2010, 110(7): 3877-3923  doi: 10.1021/cr100133q

    10. [10]

      HADLINGTON T J. Heavier tetrylene- and tetrylyne-transition metal chemistry: It′s no carbon copy[J]. Chem. Soc. Rev., 2024

    11. [11]

      FANG W, ZHU Q, ZHU C Q. Recent advances in heterometallic clusters with f-block metal-metal bonds: Synthesis, reactivity and applications[J]. Chem. Soc. Rev., 2022, 51(20): 8434-8449  doi: 10.1039/D2CS00424K

    12. [12]

      NESTEROV V, REITER D, BAG P, FRISCH P, HOLZNER R, PORZELT A, INOUE S. NHCs in main group chemistry[J]. Chem. Rev., 2018, 118(19): 9678-9842  doi: 10.1021/acs.chemrev.8b00079

    13. [13]

      CAI I C, ZIEGLER M S, BUNTING P C, NICOLAY A, LEVINE D S, KALENDRA V, SMITH P W, LAKSHMI, K V, TILLEY T D. Monomeric, divalent vanadium bis(arylamido) complexes: Linkage isomerism and reactivity[J]. Organometallics, 2019, 38(7): 1648-1663  doi: 10.1021/acs.organomet.9b00134

    14. [14]

      CHEN H, BARTLETT R A, DIAS H V R, OLMSTEAD M M, POWER P P. The use of very crowded silylamide ligands —N(SiMenPh3-n)2 (n=0, 1, or 2) to synthesize crystalline, two-coordinate, derivatives to manganese(Ⅱ), iron(Ⅱ), and cobalt(Ⅱ) and the free ion [Ph3SiNSiPh3]-[J]. J. Am. Chem. Soc., 1989, 111(12): 4338-4345  doi: 10.1021/ja00194a028

    15. [15]

      MERRILL W A, STICH T A, BRYNDA M, YEAGLE G J, FETTINGER J C, DE HONG R, REIFF W M, SCHULZ C E, BRITT R D, POWER P P. Direct spectroscopic observation of large quenching of first-order orbital angular momentum with bending in monomeric, two-coordinate Fe(Ⅱ) primary amido complexes and the profound magnetic effects of the absence of Jahn- and Renner-Teller distortions in rigorously linear coordination[J]. J. Am. Chem. Soc., 2009, 131(35): 12693-12702  doi: 10.1021/ja903439t

    16. [16]

      REIFF W M, SCHULZ C E, WHANGBO M H, SEO J I, LEE Y S, POTRATZ G R, SPICER C W, GIROLAMI G S. Consequences of a linear two-coordinate geometry for the orbital magnetism and Jahn-Teller distortion behavior of the high spin iron(Ⅱ) complex Fe[N(t-Bu)2]2[J]. J. Am. Chem. Soc., 2009, 131(2): 404-405  doi: 10.1021/ja806660f

    17. [17]

      BOYNTON J N, MERRILL W A, REIFF W M, FETTINGER J C, POWER P P. Two-coordinate, quasi-two-coordinate, and distorted three coordinate, t-shaped chromium(Ⅱ) amido complexes: Unusual effects of coordination geometry on the lowering of ground state magnetic moments[J]. Inorg. Chem., 2012, 51(5): 3212-3219  doi: 10.1021/ic202661n

    18. [18]

      BRYAN A M, MERRILL W A, REIFF W M, FETTINGER J C, POWER P P. Synthesis, structural, and magnetic characterization of linear and bent geometry cobalt(Ⅱ) and nickel(Ⅱ) amido complexes: Evidence of very large spin-orbit coupling effects in rigorously linear coordinated Co2+[J]. Inorg. Chem., 2012, 51(6): 3366-3373  doi: 10.1021/ic2012414

    19. [19]

      LIN C Y, GUO J D, FETTINGER J C, NAGASE S, GRANDJEAN F, LONG G J, CHILTON N F, POWER P P. Dispersion force stabilized two-coordinate transition metal-amido complexes of the —N(SiMe3)Dipp (Dipp=C6H3-2, 6-Pr2) ligand: Structural, spectroscopic, magnetic, and computational studies[J]. Inorg. Chem., 2013, 52(23): 13584-13593  doi: 10.1021/ic402105m

    20. [20]

      CHILTON N F, GOODWIN C A P, MILLS D P, WINPENNY R E P. The first near-linear bis(amide) f-block complex: A blueprint for a high temperature single molecule magnet[J]. Chem. Commun., 2015, 51(1): 101-103  doi: 10.1039/C4CC08312A

    21. [21]

      GOODWIN C A P, TUNA F, MCLNNES E J L, LIDDLE S T, MCMASTER J, VITORICA-YREZABAL I J, MILLS D P. [U{N(SiMe2tBu)2}3]: A structurally authenticated trigonal planar actinide complex[J]. Chem.‒Eur. J., 2014, 20(45): 14579-14583  doi: 10.1002/chem.201404864

    22. [22]

      ZHANG P, ZHANG L, WANG C, XUE S F, LIN S Y, TANG J K. Equatorially coordinated lanthanide single ion magnets[J]. J. Am. Chem. Soc., 2014, 136(12): 4484-4487  doi: 10.1021/ja500793x

    23. [23]

      HICKS J, UNDERHILL E J, KEFALIDIS C E, MARON L, JONES C. A mixed-valence tri-zinc complex, [LZnZnZnL] (L=bulky amide), bearing a linear chain of two-coordinate zinc atoms[J]. Angew. Chem., 2015, 127(34): 10138-10142  doi: 10.1002/ange.201504818

    24. [24]

      OLMSTEAD M M, POWER P P, SHONER S C. Three-coordinate iron complexes: X-ray structural characterization of the iron amide-bridged dimers [Fe(NR2)2]2 (R=SiMe3, C6H5) and the adduct Fe[N(SiMe3)2]2(THF) and determination of the association energy of the monomer Fe{N(SiMe3)2}2 in solution[J]. Inorg. Chem., 1991, 30(11): 2547-2551  doi: 10.1021/ic00011a017

    25. [25]

      HICKS J, JONES C. Extremely bulky amido first row transition metal(Ⅱ) halide complexes: Potential precursors to low coordinate metal-metal bonded systems[J]. Inorg. Chem., 2013, 52(7): 3900-3907  doi: 10.1021/ic302672a

    26. [26]

      LI Y Z, ZENG Z P, GUO Y, LIU X M, ZHANG Y Q, OUYANG Z W, WANG Z X, LIU X Y, ZHENG Y Z. Synergy of magnetic anisotropy and ferromagnetic interaction triggering a dimeric Cr(Ⅱ) zero-Field single-molecule magnet[J]. Inorg. Chem., 2023, 62(16): 6297-6305  doi: 10.1021/acs.inorgchem.2c04359

    27. [27]

      GUO Y, XIA Z Q, LIU J J, YU J X, YAO S L, SHI W Q, HU K Q, CHEN S P, WANG Y Y, LI A Y, DRIESS M, WANG W Y. A tetra-amido-protected Ge5-spiropentadiene[J]. J. Am. Chem. Soc., 2019, 141(49): 19252-19256  doi: 10.1021/jacs.9b10946

    28. [28]

      QIN Y Y, KANG Y M, ZHANG L, SUN J P, ZHANG Z J, XU J L, ZENG F L, LI A Y, WANG W Y, SHI W Q. Germylene-Fe complexes caused by heterometallic coupling and investigation into the 3d-4p bonding[J]. Chin. Chem. Lett., 2024, 35(3): 108691  doi: 10.1016/j.cclet.2023.108691

    29. [29]

      MCNEIL A J, COLLUM D B. Reversible enolization of β-amino carboxamides by lithium hexamethyldisilazide[J]. J. Am. Chem. Soc., 2005, 127(15): 5655-5661  doi: 10.1021/ja043470s

    30. [30]

      WOLTORNIST R A, COLLUM D B. Sodium hexamethyldisilazide: Using 15N-29Si scalar coupling to determine aggregation and solvation states[J]. J. Am. Chem. Soc., 2020, 142(15): 6852-6855  doi: 10.1021/jacs.0c00331

    31. [31]

      ELSCHENBROICH C. Organometallics[M]. 3rd ed. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2006: 141

    32. [32]

      BARTLETT R A, POWER P P. Two-coordinate, nonlinear, crystalline d6 and d7 complexes: Syntheses and structures of M{N(SiMePh2)2}2, M=Fe or Co[J]. J. Am. Chem. Soc., 1987, 109(24): 7563-7564  doi: 10.1021/ja00258a069

    33. [33]

      CHEN H, BARTLETT R A, OLMSTEAD M M, POWER P P, SHONER S C. Series of two-coordinate and quasi-two-coordinate transition-metal complexes: Synthesis, structural, and spectroscopic studies of sterically demanding borylamide ligands —NRBR′2 (R=Ph, R′=Mes, Xyl; R=R′=Mes), their lithium salts, Li(Et2O)2NRBR′2, and their transition-metal derivatives, M(NPhBMes2)2 (M=Cr, Co, Ni), Co(NPhBXyl2)2 and M(NMesBMes2)2 (M=Cr→Ni)[J]. J. Am. Chem. Soc., 1990, 112(3): 1048-1055  doi: 10.1021/ja00159a025

    34. [34]

      AU-YEUNG H Y, LAM C H, LAM C K, WONG W Y, LEE H K. Unusual iron(Ⅱ) and cobalt(Ⅱ) complexes derived from monodentate arylamido ligands[J]. Inorg. Chem., 2007, 46(19): 7695-7697  doi: 10.1021/ic700850e

    35. [35]

      ZHANG Y, SUO B B, WANG Z K, ZHANG N, LI Z D, LEI Y B, ZOU W L, GAO J, PENG D L, PU Z C, XIAO Y L, SUN Q M, WANG F, MA Y T, WANG X P, GUO Y, LIU W J. BDF: A relativistic electronic structure program package[J]. J. Chem. Phys., 2020, 152(6): 064113  doi: 10.1063/1.5143173

    36. [36]

      LEI Y B, SUO B B, LIU W J. iCAS: Imposed automatic selection and localization of complete active spaces[J]. J. Chem. Theory Comput., 2021, 17(8): 4846-4859  doi: 10.1021/acs.jctc.1c00456

    37. [37]

      ANDERSSON K, ROOS B O. Excitation energies in the nickel atom studied with the complete active space SCF method and second-order perturbation theory[J]. Chem. Phys. Lett., 1992, 191(6): 507-514  doi: 10.1016/0009-2614(92)85581-T

  • 加载中
    1. [1]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    2. [2]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    3. [3]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    4. [4]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    8. [8]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    9. [9]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    10. [10]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    11. [11]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    12. [12]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    13. [13]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    14. [14]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    15. [15]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    20. [20]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(0)
  • Abstract views(14)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return