Citation: Lei ZHANG, Cheng HE, Yang JIAO. An azo-based fluorescent probe for the detection of hypoxic tumor cells[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081 shu

An azo-based fluorescent probe for the detection of hypoxic tumor cells

  • Corresponding author: Yang JIAO, jiaoyang@dlut.edu.cn
  • Received Date: 12 March 2025
    Revised Date: 3 April 2025

Figures(8)

  • The abnormal metabolic activity of the tumor can increase the oxygen consumption in tumor cells, and the poor blood perfusion often happens in tumor regions as well, which are the main reasons that result in a hypoxic situation in the tumor. A fluorescence probe, AQD, with selective response toward hypoxia was designed for the detection of hypoxic tumor cells, which was obtained by the covalent connection of a large planar conjugated fluorophore with good fluorescence stability and a N, N-dimethylaniline moiety via the azo bond. The introduction of the azo bond in AQD caused significant fluorescence emission quenching, and the probe was reduced under hypoxic conditions to release the fluorophore via breaking the azo bond, resulting in the gradual recovery of fluorescence emission. Probe AQD exhibited a remarkable fluorescence response in hypoxic conditions, high selectivity, and good biocompatibility, which was successfully used for the imaging of hypoxic tumor cells and realized the detection of hypoxic A549 cells.
  • 加载中
    1. [1]

      QUEEN A, BHUTTO H N, YOUSUF M, SYED M A, HASSAN M I. Carbonic anhydrase Ⅸ: A tumor acidification switch in heterogeneity and chemokine regulation[J]. Semin. Cancer Biol., 2022,86:899-913. doi: 10.1016/j.semcancer.2022.01.001

    2. [2]

      SINGLETON D C, MACANN A, WILSON W R. Therapeutic targeting of the hypoxic tumour microenvironment[J]. Nat. Rev. Clin. Oncol., 2021,18:751-772. doi: 10.1038/s41571-021-00539-4

    3. [3]

      CHEN Z, HAN F, DU Y, SHI H, ZHOU W. Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions[J]. Signal Transduct. Target. Ther., 2023,870. doi: 10.1038/s41392-023-01332-8

    4. [4]

      LEE P, CHANDEL N S, SIMON M C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond[J]. Nat. Rev. Mol. Cell Biol., 2020,12:468-474.

    5. [5]

      ZHOU Q, XIANG J J, QIU N S, WANG Y C, PIAO Y, SHAO S Q, TANG J B, ZHOU Z X, SHEN Y Q. Tumor abnormality-oriented nanomedicine design[J]. Chem. Rev., 2023,123:10920-10989. doi: 10.1021/acs.chemrev.3c00062

    6. [6]

      CHEN D P, TANG Y Y, ZHU J W, ZHANG J J, SONG X J, WANG W J, SHAO J J, HUANG W, CHEN P, DONG X C. Photothermal-pHhypoxia responsive multifunctional nanoplatform for cancer photo chemo therapy with negligible skin phototoxicity[J]. Biomaterials, 2019,221119422. doi: 10.1016/j.biomaterials.2019.119422

    7. [7]

      NIA H T, MUNN L L, JAIN R K. Physical traits of cancer[J]. Science, 2020,370eaaz0868. doi: 10.1126/science.aaz0868

    8. [8]

      STYLIANOPOULOS T, MARTIN J D, CHAUHAN V P, JAIN R K. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors[J]. Proc. Natl. Acad. Sci. U. S. A., 2012,109:15101-15108. doi: 10.1073/pnas.1213353109

    9. [9]

      ACHARYA S, SAHOO S K. PLGA nanoparticles containing various anticancer agents and tumor delivery by EPR effect[J]. Adv. Drug Deliv. Rev., 2011,63:170-183. doi: 10.1016/j.addr.2010.10.008

    10. [10]

      CHEN Y Z, SONG W T, SHEN L M, QIU N S, HU M Y, LIU Y, LIU Q, HUANG L. Vasodilator hydralazine promotes nanoparticle penetration in advanced desmoplastic tumors[J]. ACS Nano, 2019,13:1751-1763.

    11. [11]

      FUKUMURA D, JAIN R K. Tumor microvasculature and microenvironment: Targets for antiangiogenesis and normalization[J]. Microvasc. Res., 2007,74:72-84. doi: 10.1016/j.mvr.2007.05.003

    12. [12]

      BINNEWIES M, ROBERTS E W, KERSTEN K, CHAN V, FEARON D F, MERAD M, COUSSENS L M, GABRILOVICH D I, ROSENBERG S O, HEDRICK C C, VONDERHEIDE R H, PITTET M J, JAIN R K, ZOU W P, HOWCROFT T K, WOODHOUSE E C, WEINBERG R A, KRUMMEL M F. Understanding the tumor immune microenvironment (TIME) for effective therapy[J]. Nat. Med., 2018,24:541-550. doi: 10.1038/s41591-018-0014-x

    13. [13]

      SEMENZA G L. Hypoxia-inducible factors: Coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype[J]. EMBO J., 2017,36:252-259. doi: 10.15252/embj.201695204

    14. [14]

      WU J C, WANG X, CHEN L, WANG J N, ZHANG J L, TANG J H, JI Y T, SONG J Y, WANG L, ZHAO Y X, ZHANG H, LI T H, SHENG J P, CHEN D, ZHANG Q, LIANG T B. Oxygen microcapsules improve immune checkpoint blockade by ameliorating hypoxia condition in pancreatic ductal adenocarcinoma[J]. Bioact. Mater., 2023,20:259-270.

    15. [15]

      ZHU H T Z, LI Q, SHI B B, GE F J, LIU Y Z, MAO Z W, ZHU H, WANG S, YU G C, HUANG F H, STANG P J. Dual-emissive platinum(Ⅱ) metallacage with a sensitive oxygen response for imaging of hypoxia and imaging guided chemotherapy[J]. Angew. Chem. - Int. Edit., 2020,59:20208-20214. doi: 10.1002/anie.202009442

    16. [16]

      ZHOU F, FU T, HUANG Q, KUAI H L, MO L T, LIU H L, WANG Q Q, PENG Y B, HAN D M, ZHAO Z L, FANG X H, TAN W H. Hypoxia-activated PEGylated conditional aptamer/antibody for cancer imaging with improved specificity[J]. J. Am. Chem. Soc., 2019,141:18421-18427. doi: 10.1021/jacs.9b05063

    17. [17]

      YAO S Y, YUE Y X, YING A K, HU X Y, LI H B, CAI K, GUO D S. An antitumor dual responsive host guest supramolecular polymer based on hypoxia-cleavable azocalix[J]. Angew. Chem.-Int. Edit., 2023,62e202213578. doi: 10.1002/anie.202213578

    18. [18]

      SHARMA A, ARAMBULA J F, KOO S, KUMAR R, SINGH H, SESSLER J L, KIM J S. Hypoxia targeted drug delivery[J]. Chem. Soc. Rev., 2019,48:771-813. doi: 10.1039/C8CS00304A

    19. [19]

      ZHANG S P, CHEN H, WANG L P, QIN X, JIANG B P, JI S C, SHEN X C, LIANG H. A general approach to design dual ratiometric fluorescent and photoacoustic probes for quantitatively visualizing tumor hypoxia levels in vivo[J]. Angew. Chem.-Int. Edit., 2022(61)e202107076.

    20. [20]

      ZHOU S Y, HU X L, XIA R, LIU S, PEI Q, CHEN G, XIE Z G, JING X B. A paclitaxel prodrug activatable by irradiation in a hypoxic microenvironment[J]. Angew. Chem. - Int. Edit., 2020,592319823205.

    21. [21]

      DU J J, SHI T C, LONG S R, CHEN P Z, SUN W, FAN J L, PENG X J. Enhanced photodynamic therapy for overcoming tumor hypoxia: From microenvironment regulation to photosensitizer innovation[J]. Coord. Chem. Rev., 2021,427213604. doi: 10.1016/j.ccr.2020.213604

    22. [22]

      CHEVALIER A, HARDOUIN J, RENARD P Y, ROMIEU A. Universal dark quencher based on"clicked"spectrally distinct azo dyes[J]. Org. Lett., 2013,15:6082-6085. doi: 10.1021/ol402972y

    23. [23]

      CHEVALIER A, MASSIF C, RENARD P Y, ROMIEU A. Bioconjugatable azo-based dark-quencher dyes: Synthesis and application to protease activatable far red fluorescent probes[J]. Chem. - Eur. J., 2013,19:1686-1699. doi: 10.1002/chem.201203427

    24. [24]

      CHEVALIER A, RENARD P Y, ROMIEU A. Azosulforhodamine dyes: A novel class of broad spectrum dark quenchers[J]. Org. Lett., 2014,16:3946-3949. doi: 10.1021/ol501753b

    25. [25]

      VERWILST P, HAN J Y, LEE J, MUN S, KANG H G, KIM J S. Reconsidering azobenzene as a component of small-molecule hypoxiamediated cancer drugs: A theranostic case study[J]. Biomaterials, 2017,115:104-114. doi: 10.1016/j.biomaterials.2016.11.023

    26. [26]

      GENG W C, JIA S R, ZHENG Z, LI Z H, DING D, GUO D S. A noncovalent fluorescence turn on strategy for hypoxia imaging[J]. Angew. Chem.-Int. Edit., 2019,58:2377-2381.

    27. [27]

      LI X D, WEI Y S, WU Y C, YIN L C. Hypoxia-induced pro-protein therapy assisted by a self catalyzed[J]. Angew. Chem. - Int. Edit., 2020,59:22544-22553. doi: 10.1002/anie.202004008

    28. [28]

      SHE D J, HUANG H H, LI J M, PENG S J, WANG H, YU X R. Hypoxia-degradable zwitterionic phosphorylcholine drug nanogel for enhanced drug delivery to glioblastoma[J]. Chem. Eng. J., 2021,408127359. doi: 10.1016/j.cej.2020.127359

    29. [29]

      DONG B L, SONG W H, KONG X Q, ZHANG N, LIN W Y. Visualizing cellular sodium hydrosulfite (Na2S2O4) using azo-based fluorescent probes with a high signal-to-noise ratio[J]. J. Mater. Chem. B, 2019,7:730-733. doi: 10.1039/C8TB02487A

    30. [30]

      CHEVALIER A, PIAO W, HANAOKA K, NAGANO T, RENARD P Y, ROMIEU A. Azobenzene caged sulforhodamine dyes: A novel class of'turn-on'reactive probes for hypoxic tumor cell imaging[J]. Methods Appl. Fluoresc., 2015,3044004.

    31. [31]

      PIAO W, TSUDA S, TANAKA Y, MAEDA S, LIU F Y, TAKAHASHI S, KUSHIDA Y, KOMATSU T, UENO T, TERAI T, NAKAZAWA T, UCHIYAMA M, MOROKUMA K, NAGANO T, HANAOKA K. Development of azo based fluorescent probes to detect different levels of hypoxia[J]. Angew. Chem.-Int. Edit., 2013,52:13028-13032. doi: 10.1002/anie.201305784

    32. [32]

      CHEVALIER A, MERCIER C, SAUREL L, ORENGA S, RENARD P Y, ROMIEU A. The first latent green fluorophores for the detection of azoreductase activity in bacterial cultures[J]. Chem. Commun., 2013,49:8815-8817. doi: 10.1039/c3cc44798g

    33. [33]

      CEINOS S G, RIVERO A R, GELLA F R, FUENTE S S, PASTOR S G, CALVO N, ORREGO A H, GUISAN J M, CORRAL I, RODRIGUEZ F S, RIBAGORDA M. Turn-on fluorescent biosensors for imaging hypoxia-like conditions in living cells[J]. J. Am. Chem. Soc., 2022,144:8185-8193. doi: 10.1021/jacs.2c01197

    34. [34]

      KUMARI R, SUNIL D, NINGTHOUjAM R S, KUMAR N A. Azodyes as markers for tumor hypoxia imaging and therapy: An up-todate review[J]. Chem.-Biol. Interact., 2019,307:91-104. doi: 10.1016/j.cbi.2019.04.034

    35. [35]

      WANG C Y, ZHANG S P, HUANG J H, CUI L, HU J, TAN S Y. Novel designed azo substituted semi cyanine fluorescent probe for cytochrome P450 reductase detection and hypoxia imaging in cancer cells[J]. RSC Adv., 2019,9:21572-21577. doi: 10.1039/C9RA02741F

    36. [36]

      MAHESHWARAN M, KUMAR K K S. DFT and electrochemical determination of Hg2+ and Pb2+ in water using polyaniline-quinoxaline composite modified GCE electrode[J]. J. Mol. Liq., 2024,398124317. doi: 10.1016/j.molliq.2024.124317

    37. [37]

      ZHU W P, DAI M, XU Y F, QIAN X H. Novel nitroheterocyclic hypoxic markers for solid tumor: Synthesis and biological evaluation[J]. Bioorg. Med. Chem., 2008,16:3255-3260. doi: 10.1016/j.bmc.2007.12.011

    38. [38]

      CUI C F, GAO X, JIA X C, JIAO Y, DUAN C Y. A rhodamine Bbased turn on fluorescent probe for selective recognition of mercury(Ⅱ) ions[J]. Inorg. Chim. Acta, 2021,520120285. doi: 10.1016/j.ica.2021.120285

    39. [39]

      HASANINEjAD A, ZARE A, MOHAMMADIZADEH M R, SHEKOUHY M. Lithium bromide as an efficient, green, and inexpensive catalyst for the synthesis of quinoxaline derivatives at room temperature[J]. Green Chem. Lett. Rev., 2010,3:143-148. doi: 10.1080/17518251003619192

    40. [40]

      ELMES R B P. Bioreductive fluorescent imaging agents: Applications to tumor hypoxia[J]. Chem. Commun., 2016,52:8935-8956. doi: 10.1039/C6CC01037G

    41. [41]

      ZHANG H, FAN J L, WANG J Y, ZHANG S Z, DOU B R, PENG X J. An off-on COX-2-specific fluorescent probe: Targeting the golgi apparatus of cancer cells[J]. J. Am. Chem. Soc., 2013,135:11663-11669. doi: 10.1021/ja4056905

    42. [42]

      LUO S H, LIU Y C, WANG F Y, FEI Q, SHI B, AN J C, ZHAO C C, TUNG C H. A fluorescent turn-on probe for visualizing lysosomes in hypoxic tumor cells[J]. Analyst, 2016,141:2879-2882. doi: 10.1039/C6AN00369A

    43. [43]

      CHEVALIER A, RENARD P Y, ROMIEU A. Azo-based fluorogenic probes for biosensing and bioimaging: Recent advances and upcoming challenges[J]. Chem.-Asian J., 2017,12:2008-2028. doi: 10.1002/asia.201700682

    44. [44]

      YILDIZ E, KARADENIZ B, YILDIZ A M, RENCUZOGULLARI E. Bivalent and trivalent transition metal complexes of azo compounds derived from anthraquinone and their mutagenic-teratogenic effects[J]. Chinese J. Inorg. Chem., 2013,29(3):595-604.

    45. [45]

      ZHANG J J, YAN M, LU W, XU L, WANG X Q. Bivalent and trivalent transition metal complexes of azo compounds derived from anthraquinone and their mutagenic-teratogenic effects[J]. Chinese J. Inorg. Chem., 2021,37(6):1071-1079.

    46. [46]

      ZHANG C L, ZHANG J J, SHEN Y, LU J C, HUANG F, XU L. A highly sensitive ratiometric fluorescence probe for Zn2+ detection in living cells[J]. Chinese J. Inorg. Chem., 2022,38(8):1623-1632.

    47. [47]

      WANG C, YANG M, DENG X Y, HE M L. A fluorescence-enhanced probe based on benzimidazole for bisulfite and its practical application[J]. Chinese J. Inorg. Chem., 2020,36(4):762-768.

    48. [48]

      LIU Y R, ZHANG D T, QU Y W, TANG F, WANG H, DING A X, LI L. Advances in small-molecule fluorescent pH probes for monitoring mitophagy[J]. Chem. Biomed. Imaging, 2024,2:81-97. doi: 10.1021/cbmi.3c00070

    49. [49]

      GONZALEZ G A, OSUjI E U, FIUR N C, CLARK M G, MA S, LUKOV L L, ZHANG C. Alteration of lipid metabolism in hypoxic cancer cells[J]. Chem. Biomed. Imaging, 2025,3:25-34. doi: 10.1021/cbmi.4c00050

    50. [50]

      CHEN Y Y, JIANG H, HAO T T, ZHANG N, LI M Y, WANG X Y, WANG X X, WEI W, ZHAO J. Fluorogenic reactions in chemical biology: Seeing chemistry in cells[J]. Chem. Biomed. Imaging, 2023,1:590-619. doi: 10.1021/cbmi.3c00029

    51. [51]

      SHI J C, TIAN Y M, WU W N, WANG Y, LI X X. A quinoxalinecontaining Schiff base probe for the selective and sensitive detection of Zn2+ and imaging application in living cells[J]. Chinese J. Inorg. Chem., 2023,39(7):1295-1302.

  • 加载中
    1. [1]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    2. [2]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    3. [3]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    4. [4]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    5. [5]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    6. [6]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    7. [7]

      Rui TIANDuo LIYuan RENJiamin CHAIXuehua SUNHaoyu LIYuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389

    8. [8]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    9. [9]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    10. [10]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    11. [11]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    12. [12]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    13. [13]

      Zhoupeng ZhengShengyi GongQianhua LiShiya ZhangGuoqiang Feng . Lipid droplets and gallbladder targeted fluorescence probe for ratiometric NO imaging in gallstones disease models. Chinese Chemical Letters, 2025, 36(5): 110191-. doi: 10.1016/j.cclet.2024.110191

    14. [14]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    15. [15]

      Shuaige BaiShuai HuangTing LuoBin FengYanpeng FangFeiyi ChuJie DongWenbin Zeng . Debut of a responsive chemiluminescent probe for butyrylcholinesterase: Application in biological imaging and pesticide residue detection. Chinese Chemical Letters, 2025, 36(3): 110054-. doi: 10.1016/j.cclet.2024.110054

    16. [16]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    17. [17]

      Tiancong ShiXi ChenXiao ZhouHongyi ZhangFuping HanLihan CaiWen SunJianjun DuJiangli FanXiaojun Peng . Azaindole-based asymmetric pentamethine cyanine dye for mitochondrial pH detection and near-infrared ratiometric fluorescence imaging of mitophagy. Chinese Chemical Letters, 2025, 36(6): 110408-. doi: 10.1016/j.cclet.2024.110408

    18. [18]

      Qiuye WangYabing SunLiangxue LaiHaijing CuiYonglong YeMing YangWeihao ZhuBo YuanQuanliang MaoWenzhi RenAiguo Wu . MMP-9-responsive probe for fluorescence-magnetic resonance dual-mode imaging of hepatocellular carcinoma models with different metastatic capacities. Chinese Chemical Letters, 2025, 36(4): 110212-. doi: 10.1016/j.cclet.2024.110212

    19. [19]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    20. [20]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

Metrics
  • PDF Downloads(0)
  • Abstract views(222)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return