Citation: Yufan ZHAO, Jinglin YOU, Shixiang WANG, Guopeng LIU, Xiang XIA, Yingfang XIE, Meiqin SHENG, Feiyan XU, Kai TANG, Liming LU. Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063 shu

Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals

  • Corresponding author: Jinglin YOU, jlyou@163.com
  • Received Date: 25 February 2025
    Revised Date: 2 April 2025

Figures(7)

  • Four binary Li2O-GeO2 crystals, Li4GeO4, Li6Ge2O7, Li2GeO3, and Li2Ge2O5, were synthesized through solid-state sintering. In situ high-temperature Raman spectroscopy, combined with theoretical calculations, was employed to qualitatively and quantitatively analyze the structure evolution from the crystalline to the molten state, as well as the melt microstructure. The study reveals that the melts of Li4GeO4, Li6Ge2O7, and Li2GeO3 are composed of [GeO4]4-, [Ge2O7]6-, and [GeO3]2- units, respectively, along with Li+ ions. In contrast, Li2Ge2O5 crystal undergoes a gradual transition from a three-dimensional network structure formed by [GeO4]4- tetrahedra to smaller [Ge3O9]6- three-membered rings as the temperature increases towards the melting point. The microstructure units and a series of model clusters have been designed, optimized, and calculated by quantum chemistry ab initio calculations. The computational simulation, in conjunction with the experiments, presents a novel method for correcting the experimental Raman spectra of the melts. By introducing the concept of delicate structure and employing Gaussian functions to deconvolute the stretching vibration band of non-bridging oxygen in [GeO4]4- tetrahedra within Raman spectra, we quantitatively determined the distribution of structure units (Qi, where i denotes the number of bridging oxygens in each [GeO4]4- tetrahedron, i=0-4) for these four crystals in their molten state.
  • 加载中
    1. [1]

      HANNON A C, MARTINO D D, SANTOS L F, ALMEIDA R M. Ge-O coordination in cesium germanate glasses[J]. J. Phys. Chem. B, 2007, 111(13): 3342-3354

    2. [2]

      XU Y W, LI Y D, LAN G X. Pressure-induced amorphization of Li2GeO3 and Li6Ge2O7 crystals[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 1996, 52: 1417-1422

    3. [3]

      ZHANG S J, WAN S M, ZENY Y, JIANG S J, GONG X Y, YOU J L. In situ Raman spectroscopy and DFT studies of the Li2GeO3 melt structure[J]. Inorg. Chem., 2019, 58: 51-56

    4. [4]

      LIU W J, DONG C J, ZHANG M X, LI F F, HE X Y, CHEN C, ZHAO C C, MENG S. The latest development of the germanate luminescent materials[J]. Rare Metals and Cemented Carbides, 2017, 45(1): 67-70

    5. [5]

      EVANS J M, PETRICEVIC V, BYKOV A B, DELGADO A, ALFANO A A. Direct diode-pumped continuous-wave near-infrared tunable laser operation of Cr4+ forsterite and Cr4+ Ca2GeO4[J]. Opt. Lett., 1997, 22(15): 1171-1173

    6. [6]

      IVANOV V A, MARYCHEV M O, ANDREEV P V, KOSEVA I, TZVETKOV P, NIKOLOV V. Novel solvents for the single crystal growth of germanate phases by the flux method[J]. J. Cryst. Growth, 2015, 426: 25-32

    7. [7]

      SCHMIDT M W, CONNOLLY J A D, GUNTHER D, BOGAERTS M. Element partitioning: The role of melt structure and composition[J]. Science, 2006, 312: 1646-1650

    8. [8]

    9. [9]

      WANG Y Y, YOU J L, SIMON P, ZHENG S B. Temperature dependent structure evolutions of crystals and their melts and sodium germanates and germanium coordination study by Raman spectroscopy[J]. The Journal of Light Scattering, 2012, 24(4): 325-332

    10. [10]

      WAN S M, ZHANG S J, GONG X Y, ZENG Y, JIANG S J, YOU J L. Structural investigations on two typical lithium germanate melts by in situ Raman spectroscopy and density functional theory calculations[J]. CrystEngComm, 2020, 22: 701-707

    11. [11]

      WAN S M, ZHANG S J, LI B, ZHANG X, GONG X Y, YOU J L. Threefold coordinated germanium in a GeO2 melt[J]. Nat. Commun., 2023, 14(1): 7008

    12. [12]

      LIU S S, ZHANG G C, FENG K, HAN Y Y, HE T, YOU J L, WU Y C. In-situ Raman spectroscopy studies on La2CaB10O19 crystal growth[J]. Cryst. Growth Des., 2020, 20(10): 6604-6609

    13. [13]

      WANG M, YOU J L, SOBOL A A, WANG J, WU J, LV X M. Temperature-dependent Raman spectroscopic studies of microstructure present in dipotassium molybdate crystals and their melts[J]. J. Raman Spectrosc., 2016, 47(10): 1259-1265

    14. [14]

      FARBER D L, WILLIAMS Q. Pressure-induced coordination changes in alkali-germanate melts: An in situ spectroscopic investigation[J]. Sci., 1992, 256: 1427-1430

    15. [15]

      YOU J L, JIANG G C, HOU H Y, CHEN H, WU Y Q, XU K D. Quantum chemistry study on superstructure and Raman spectra of binary sodium silicates[J]. J. Raman Spectrosc., 2005, 36: 237-249

    16. [16]

      TANG X H, YOU J L, WANG J, WANG M, GONG X Y, ZHANG F, TANG K. Quantitative study on microstructure of (CaO-SiO2)-xAl2O3 ternary glass by Raman spectroscopy[J]. The Journal of Light Scattering, 2022, 34(1): 22-29

    17. [17]

      LEE T J, JAYATILAKA D. An open-shell restricted Hartree-Fock perturbation theory based on symmetric spin orbitals[J]. Chem. Phys. Lett., 1993, 201: 1-10

    18. [18]

      NOWAK M J, ROSTKOWSKA H, LAPINSKI L, KWIATKOWSKI J S, LESZCZYNSKI J. Experimental matrix isolation and theoretical ab initio HF/6-31G(d, p) studies of infrared spectra of purine, adenine and 2-chloroadenine[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 1994, 50: 1081-1094

    19. [19]

      WANG C, LIU Z G, LIN P P, XU X, LU F G, XU J J, SHI Y H, HE P, LIN T S. Impacts of 3Li2O-2GeO2 melt on fabrication and electrical performance of novel LLZTO@Li4GeO4/Li2O composite electrolytes[J]. J. Eur. Ceram. Soc., 2022, 42(5): 2290-2298

    20. [20]

      HENDERSON G S, WANG H M. Germanium coordination and the germanate anomaly[J]. Eur. J. Mineral., 2002, 14: 733-744

    21. [21]

      ZHAO Y F, YOU J L, WANG J, WANG M, TANG K LU L M, ZHANG Q L, WAN S M, GONG X Y, LIU G P. Quantitative studies on local structure of molten binary potassium germanates[J]. Inorg. Chem., 2023, 62(28): 10905-10915

    22. [22]

      SCOTT A P, RADOM L. Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Mller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors[J]. J. Phys. Chem., 1996, 100: 16502-16513

    23. [23]

      POLAVARAPU P. Ab initio vibrational Raman and Raman optical activity spectra[J]. J. Phys. Chem., 1990, 94(21): 8106-8112

  • 加载中
    1. [1]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    4. [4]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    5. [5]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    6. [6]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    7. [7]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    8. [8]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    9. [9]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    10. [10]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    11. [11]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    12. [12]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    13. [13]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    14. [14]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    15. [15]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    18. [18]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    19. [19]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    20. [20]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(0)
  • Abstract views(6)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return