NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction
- Corresponding author: Mingli XU, xumingli0326@126.com
Citation:
Haodong JIN, Qingqing LIU, Chaoyang SHI, Danyang WEI, Jie YU, Xuhui XU, Mingli XU. NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(6): 1068-1082.
doi:
10.11862/CJIC.20250048
LU Y K, LI Z X, XU Y L, TANG L Q, XU S J, LI D L, ZHU J J, JIANG D L. Bimetallic Co-Mo nitride nanosheet arrays as high-performance bifunctional electrocatalysts for overall water splitting[J]. Chem. Eng. J., 2021,411128433. doi: 10.1016/j.cej.2021.128433
SHANG W J, DENG X, WANG B H, TIAN Y Q, LI X, LOU Y B, CHEN J X. Preparation and electrocatalytic performance of MoSe2/CoMOF/NF for oxygen evolution reaction[J]. Chinese J. Inorg. Chem., 2024,40(1):79-87. doi: 10.11862/CJIC.20230284
WAN X K, WU H B, GUAN B Y, LUAN D, LOU X W. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity[J]. Adv. Mater., 2020,32(7)1901349. doi: 10.1002/adma.201901349
YIN Y L. Present situation and prospect of hydrogen energy industry[J]. Chem. Ind. Eng., 2021,38(4):78-83.
CHEN K, WU F S, XIAO S, ZHANG J B, ZHU L H. PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis[J]. Chinese J. Inorg. Chem., 2024,40(7):1357-1367. doi: 10.11862/CJIC.20230350
ZHAO R, ZHANG C Y, WEI L T, WEI D X, SU J Z, GUO L J. Tailoring a local acidic microenvironment on amorphous NiMoB catalyst to boost alkaline and neutral hydrogen evolution reactions[J]. Appl. Catal. B-Environ., 2025,365124928. doi: 10.1016/j.apcatb.2024.124928
LIU S D, LI H K, ZHONG J, XU K, WU G, LIU C, ZHOU B B, YAN Y, LI L X, CHA W H, CHANG K K, LI Y Y, LU J. A crystal glass-nanostructured Al-based electrocatalyst for hydrogen evolution reaction[J]. Sci. Adv., 2022,8(44)eadd6421. doi: 10.1126/sciadv.add6421
SHEN Q Q, DU X B W, QIAN K C, JIN Z K, FANG Z, WEI T, LI R H. Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis[J]. Chinese J. Inorg. Chem., 2024,40(10):1953-1964. doi: 10.11862/CJIC.20240028
LI Z M, XIN S S, ZHANG Y R, ZHANG Z F, LI C P, LI C J, BAO R, YI J H, XU M L, WANG J S. Boosting elementary steps kinetics towards energetic alkaline hydrogen evolution via dual sites on phase-separated Ni-Cu-Mn/hydroxide[J]. Chem. Eng. J., 2023,451138540. doi: 10.1016/j.cej.2022.138540
LIU Q Q, SHI C Y, REN Y R, MENG Z W, HUANG B Y, XU M L. Superhydrophilic and heterostructured NiCu/polyaniline nanocomposites as highly efficient electrocatalyst and photothermal conversion layer integrated thermoelectric device for overall water splitting[J]. Appl. Surf. Sci., 2024,664160266. doi: 10.1016/j.apsusc.2024.160266
METE S, SENGAR M S, DHAYAL M, KUMAR V, SINGH S K. Lattice strain-induced electronic effects on a heteroatom-doped nickel alloy catalyst for electrochemical water splitting[J]. J. Mater. Chem. A, 2024,12(46):32371-32384. doi: 10.1039/D4TA05604C
LÖFFLER T, LUDWIG A, ROSSMEISL J, SCHUHMANN W. What makes high-entropy alloys exceptional electrocatalysts?[J]. Angew. Chem.-Int. Edit., 2021,60(52):26894-26903. doi: 10.1002/anie.202109212
SUN C, ZHAO P C, YANG Y Q, LI Z, SHENG W C. Lattice oxygen-induced d-band shifting for enhanced hydrogen oxidation reaction on nickel[J]. ACS Catal., 2022,12(19):11830-11837. doi: 10.1021/acscatal.2c03264
PATIL R B, HOUSE S D, MANTRI A, YANG J C, MCKONE J R. Direct observation of Ni-Mo bimetallic catalyst formation via thermal reduction of nickel molybdate nanorods[J]. ACS Catal., 2020,10(18):10390-10398. doi: 10.1021/acscatal.0c02264
MUKHERJI R, MATHUR V, SAMARIYA A, MUKHERJI M. Study of the hydrogenation and re-heating of Co-doped ZnO and In2O3 nano composites[J]. Adv. Compos. Hybrid Mater., 2018,1(4):809-818. doi: 10.1007/s42114-018-0052-3
AGARWAL S, AHEMAD M J, KUMAR S, DUNG D V, RAI P, KUMAR M, AWASTHI K, YU Y T. Enhanced hydrogen sensing performances of PdO nanoparticles-decorated ZnO flower-like nanostructures[J]. J. Alloy. Compd., 2022,900163545. doi: 10.1016/j.jallcom.2021.163545
SAINI B, K H, LAISHRAM D, KRISHNAPRIYA R, SINGHAL R, SHARMA R K. Role of ZnO in ZnO nanoflake/Ti3C2 MXene composites in photocatalytic and electrocatalytic hydrogen evolution[J]. ACS Appl. Nano Mater., 2022,5(7):9319-9333. doi: 10.1021/acsanm.2c01639
HAO J, WU K L, LYU C J, YANG Y Q, WU H J, LIU J J, LIU N Y, LAU W M, ZHENG J L. Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting[J]. Mater. Horizons, 2023,10(7):2312-2342. doi: 10.1039/D3MH00366C
GONG F L, CHEN Z L, CHANG C Q, SONG M, ZHAO Y, LI H T, GONG L H, ZHANG Y L, ZHANG J, ZHANG Y H, WEI S Z, LIU J. Hollow Mo/MoS Vn nanoreactors with tunable built-in electric fields for sustainable hydrogen production[J]. Adv. Mater., 2025,37(5)2415269. doi: 10.1002/adma.202415269
HAO B, GAN M Y, GUO J J, LI G S, SONG Y H, Shen Y Q, Xu B S, Liu P Z, Guo J J. Constructing 2D PtSe2/PtCo heterojunctions by partial selenization for enhanced hydrogen evolution[J]. Adv. Funct. Mater., 2025,35(3)2413916. doi: 10.1002/adfm.202413916
ZHU Y P, GUO C, ZHENG Y, QIAO S Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes[J]. Accounts Chem. Res., 2017,50(4):915-923. doi: 10.1021/acs.accounts.6b00635
LI Y, CHEN J X, CAI P W, WEN Z H. Electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation[J]. J. Mater. Chem. A, 2018,6(12):4948-4954. doi: 10.1039/C7TA10374C
OH N K, KIM C, LEE J, KWON O, CHOI Y, JUNG G Y, LIM H Y, KWAK S K, KIM G, PARK H. In-situ local phase-transitioned MoSe2 in La0.5Sr0.5CoO3-δ heterostructure and stable overall water electrolysis over 1000 hours[J]. Nat. Commun., 2019,10(1)1723. doi: 10.1038/s41467-019-09339-y
YU J H, CONG S M, LIU B J, TENG W T. Construction of MoS/ NiFe-Ni foam p-n heterojunction as photoanode for tetracycline degradation and simultaneous cathodic hydrogen evolution[J]. J. Environ. Chem. Eng., 2022,10(5)108437. doi: 10.1016/j.jece.2022.108437
GUPTA A, LIKOZAR B, JAIDKA S. A review on photocatalytic sea-water splitting with efficient and selective catalysts for hydrogen evolution reaction[J]. Renew. Sust. Energ. Rev., 2025,208115074. doi: 10.1016/j.rser.2024.115074
WANG L H, XIAO H, YANG L, LI J X, ZI J Z, LIAN Z C. Hollow nanobox-shaped Cu2-xS@ZnxCd1-xS heterojunction by light multireflection with z-scheme mechanism for enhanced photocatalytic hydrogen production[J]. Adv. Funct. Mater., 20242416358.
ZHANG X F, GAO W Q, SU X W, WANG F L, LIU B S, WANG J J, LIU H, SANG Y H. Conversion of solar power to chemical energy based on carbon nanoparticle modified photo-thermoelectric generator and electrochemical water splitting system[J]. Nano Energy, 2018,48:481-488. doi: 10.1016/j.nanoen.2018.03.055
ZHAO L L, YANG Z Y, CAO Q, YANG L J, ZHANG X F, JIA J, SANG Y H, WU H J, ZHOU W J, LIU H. An earth-abundant and multifunctional Ni nanosheets array as electrocatalysts and heat absorption layer integrated thermoelectric device for overall water splitting[J]. Nano Energy, 2019,56:563-570. doi: 10.1016/j.nanoen.2018.11.035
GAO P, ZHANG Y P, WANG M, YU W F, YAN Z H, LI J B. Cost-efficient sunlight-driven thermoelectric electrolysis over Modoped Ni5P4 nanosheets for highly efficient alkaline water/seawater splitting[J]. J. Mater. Sci. Technol., 2025,211:134-144. doi: 10.1016/j.jmst.2024.05.019
YUAN H F, LIU F, XUE G B, LIU H, WANG Y J, ZHAO Y W, LIU X Y, ZHANG X L, ZHAO L L, LIU Z, LIU H, ZHOU W J. Laser patterned and bifunctional Ni@N-doped carbon nanotubes as electrocat-alyst and photothermal conversion layer for water splitting driven by thermoelectric device[J]. Appl. Catal. B-Environ., 2021,283119647. doi: 10.1016/j.apcatb.2020.119647
QIN Y X, QIN B C, WANG D Y, CHANG C, ZHAO L D. Solid-state cooling: Thermoelectrics[J]. Energy Environ. Sci., 2022,15(11):4527-4541. doi: 10.1039/D2EE02408J
LI Z X, YU C C, WEN Y Y, GAO Y, XING X F, WEI Z T, SUN H, ZHANG Y W, SONG W Y. Mesoporous hollow Cu-Ni Alloy nanocage from core-shell Cu@Ni nanocube for efficient hydrogen evolution reaction[J]. ACS Catal., 2019,9(6):5084-5095. doi: 10.1021/acscatal.8b04814
LIU J, ZHANG Y H, HUANG Z A, BAI Z M, GAO Y K. Photoelec-trocatalytic oxidation of methane over three-dimensional ZnO/CdS/NiFe layered double hydroxide[J]. Chin. J. Eng., 2021,43(8):1064-1072.
ZHU J X, XIONG Y H, GUO R. Research progress in modification of TiO 2 photocatalyst[J]. Inorganic Chemicals Industry, 2020,52(3):23-27.
XU L, WANG S P. A novel hierarchical MoS2-ZnO-Ni electrocatalyst prepared by electrodeposition coupling with dealloying for hydrogen evolution reaction[J]. J. Electroanal. Chem., 2018,808:173-179. doi: 10.1016/j.jelechem.2017.12.022
CHEN G B, WANG T, ZHANG J, LIU P, SUN H J, ZHUANG X D, CHEN M W, FENG X L. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites[J]. Adv. Mater., 2018,30(10)1706279. doi: 10.1002/adma.201706279
HUANG C J, WANG Z W, YAO Z Y, MA Y L, GUO F, CHAI L J. Facile fabrication of an enhanced electrodeposited nickel electrode for alkaline hydrogen evolution reaction[J]. Electrochim. Acta, 2024,477143792. doi: 10.1016/j.electacta.2024.143792
XU H J, WANG X C, ZHAO W, GUO R J, XUE Z Y, ZHANG T, SHAO Y, YAO K F. Facile self-oxidized Ni nano-foam as high-performance catalyst for hydrogen and oxygen evolution[J]. Sci. China-Mater., 2023,66(10):3855-3864. doi: 10.1007/s40843-023-2522-y
ZHAO Y, ZHANG J, ZHANG W S, WU A L. Growth of Ni/Mo/Cu on carbon fiber paper: An efficient electrocatalyst for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2021,46(72):35550-35558. doi: 10.1016/j.ijhydene.2021.03.085
CHEN F F, ZHANG Y, HAO X Y, LIU Y D, SONG Y F, GAO G Z, XU M Q, SUN C, LIU H, ZHANG X H, LU Z M, DONG H, LU F, WANG W H, LIU H, CHENG Y H. Monometallic interphase synergistic Ni-based catalysts prepared by facile magnetron sputtering for efficient alkaline hydrogen evolution[J]. J. Alloy. Compd., 2024,976173103. doi: 10.1016/j.jallcom.2023.173103
PANG C X, ZHU S L, XU W C, LIANG Y Q, LI Z Y, WU S L, JIANG H, WANG H, CUI Z D. Self-standing Mo-NiO/Ni electrocatalyst with nanoporous structure for hydrogen evolution reaction[J]. Electrochim. Acta, 2023,439141621. doi: 10.1016/j.electacta.2022.141621
LI J M, GAO R T, LIU X H, ZHANG X Y, WU L M, WANG L. Single-atom Pt embedded in defective layered double hydroxide for efficient and durable hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2023,15(36):42501-42510. doi: 10.1021/acsami.3c07000
MOUSAVI N, ENSAFI A A, ZAREAN M K, HADADZADEH H. Synthesis of quinacridone derivative supported on ZnO hexagonal as a new electrocatalyst for hydrogen evolution reaction[J]. J. Electroanal. Chem., 2023,928117029. doi: 10.1016/j.jelechem.2022.117029
PAN Y, SUN K A, LIU S J, CAO X, WU K L, CHEONG W C, CHEN Z, WANG Y, LI Y, LIU Y Q, WANG D S, PENG Q, CHEN C, LI Y D. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting[J]. J. Am. Chem. Soc., 2018,140(7):2610-2618. doi: 10.1021/jacs.7b12420
BHATTARAI R M, NGUYEN L, LE N, CHHETRI K, ACHARYA D, TEKE S, SAUD S, NGUYEN D B, KIM S J, MOK Y S. Cyanide functionalization and oxygen vacancy creation in Ni-Fe nano petals sprinkled with MIL-88A derived metal oxide nano droplets for bifunctional alkaline seawater electrolysis[J]. Small, 20252410027. doi: 10.1002/smll.202410027
GUO L K, LIU T P, ZHANG L, MA M Y, GAO P, CAO D, CHENG D J. Novel Ru-O3Se4 single atoms regulate the charge redistribution at Ni3Se2/FeSe2 interface for improved overall water splitting in alkaline media[J]. Adv. Energy Mater., 2025,15(1)2402558. doi: 10.1002/aenm.202402558
WANG Q L, XU C Q, LIU W, HUNG S F, YANG H B, GAO J J, CAI W Z, CHEN H M, LI J, LIU B. Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting[J]. Nat. Commun., 2020,11(1)4246. doi: 10.1038/s41467-020-18064-w
MUSHTAQ M, ZHU Z X, YANG H, KHANAM Z, HU Y W, MATHI S, WANG Z M, BALOGUN M S, HUANG Y C. Lattice strain-modulated trifunctional CoMoO 4 polymorph-based electrodes for asymmetric supercapacitors and self-powered water splitting[J]. Small, 2025,212409418. doi: 10.1002/smll.202409418
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Junqing WEN , Ruoqi WANG , Jianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
(b) NiCu/ZnO/NF; (c) NiCu/NF; (d) ZnO/NF.