Citation: Xinlong XU, Chunxue JING, Yuzhen CHEN. Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046 shu

Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion

  • Corresponding author: Yuzhen CHEN, yzchen@qust.edu.cn
  • Received Date: 15 March 2025
    Revised Date: 8 May 2025

Figures(7)

  • This work focuses on fabricating multifunctional electrode materials and reaction systems for the highly efficient 5-hydroxymethylfurfural (HMF) oxidation under mild conditions. Bimetallic metal-organic framework materials (BMOF) and their derivatives were synthesized for the electrocatalytic oxidation of HMF at low voltage. Bimetallic CoNi-MOF-74 was synthesized using the solvothermal method. Two methods were used to transform the MOF material into electrode materials. Firstly, the CoNi alloy particles stabilized by porous carbon matrix (denoted asCoNi@C) were obtained by pyrolysis of CoNi-MOF-74. Secondly, the CoNi(OH)2 was in situ and obtained through the hydrolysis of CoNi-MOF-74 under an alkaline electrolyte during electrocatalysis. Interestingly, the optimal Co1Ni3@C derived from Co1Ni3-MOF-74 via pyrolysis at 800 ℃ exhibited excellent catalytic activity and high 2, 5- furandicarboxylic acid (FDCA) selectivity (87.26%) for HMF electrooxidation at low potential. The Co0.5Ni0.5(OH)2 generated in situ during electrolysis of Co1Ni1-MOF-74 displayed high selectivity (88.59%) for the intermediate product of 5-(hydroxymethyl) furano-2-carboxylic acid (HMFCA). The superior performance is mainly attributed to the pore structure of the catalytic materials, the synergistic effect between Co and Ni, and the good electrical conductivity of graphitic carbon.
  • 加载中
    1. [1]

      HOFMANN M A, SHAHID A T, GARRIDO M, FERREIRA M J, CORREIA J R, BORDADO J C. Biobased thermosetting polyester resin for high-performance applications[J]. ACS Sustain. Chem. Eng., 2022, 10(11): 3442-3454

    2. [2]

      LI N, ZONG M H. (Chemo)Biocatalytic upgrading of biobased furanic platforms to chemicals, fuels, and materials: A comprehensive review[J]. ACS Catal., 2022, 12(16): 10080-10114

    3. [3]

      SCHADE O R, DANNECKER P K, KALZ K F, STEINBACH D, MEIER M A R, GRUNWALDT J D. Direct catalytic route to biomass-derived 2, 5-furandicarboxylic acid and its use as monomer in a multicomponent polymerization[J]. ACS Omega, 2019, 4(16): 16972-16979

    4. [4]

      EERHART A J J E, FAAIJ A P C, PATEL M K. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance[J]. Energy Environ. Sci., 2012, 5(4): 6407-6422

    5. [5]

      SAJID M, ZHAO X B, LIU D H. Production of 2, 5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): Recent progress focusing on the chemical-catalytic routes[J]. Green Chem., 2018, 20(24): 5427-5453

    6. [6]

      LU Y, DONG C L, HUANG Y C, ZOU Y, LIU Z, LIU Y, LI Y, HE N, SHI J, WANG S. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural[J]. Angew. Chem. ‒Int. Edit., 2020, 59(43): 19215-19221

    7. [7]

      MITTAL A, PILATH H M, JOHNSON D K. Direct conversion of biomass carbohydrates to platform chemicals: 5-hydroxymethylfurfural (HMF) and furfural[J]. Energy Fuels, 2020, 34(3): 3284-3293

    8. [8]

      ZHOU H, SU Z H, KONG X G, DUAN H G. Recent progress in electrochemical catalytic conversion of biomass platform molecules into high-value added fuels and chemicals[J]. Chem. J. Chinese Universities, 2020, 41(7): 1449-1460

    9. [9]

      LIU G, SUN F Z, FU S Q, LI Y J, LI Z, HUANG X Q. Research progress of polyoxometalates in electrocatalytic chemical conversion[J]. Journal of Liaocheng University (Natural Science Edition), 2024, 37(4): 89-102

    10. [10]

      ZHOU B, LI Y Y, ZOU Y Q, CHEN W, ZHOU W, SONG M L, WU Y J, LU Y X, LIU J L, WANG Y Y, WANG S Y. Platinum modulates redox properties and 5-hydroxymethylfurfural adsorption kinetics of Ni(OH)2 for biomass upgrading[J]. Angew. Chem. ‒Int. Edit., 2021, 60: 22908-22914

    11. [11]

      WU Q J, SI D H, YE S, DONG Y L, CAO R, HUANG Y B. Photocoupled electroreduction of CO2 over photosensitizer-decorated covalent organic frameworks[J]. J. Am. Chem. Soc., 2023, 145(36): 19856-19865

    12. [12]

      YOU B, LIU X, JIANG N, SUN Y J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization[J]. J. Am. Chem. Soc., 2016, 138(41): 13639-13646

    13. [13]

      ZHANG N N, ZOU Y Q, TAO L, CHEN W, ZHOU L, LIU Z J, ZHOU B, HUANG G, LIN H Z, WANG S Y. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: Identified pathway by in situ sum frequency generation vibrational spectroscopy[J]. Angew. Chem. ‒Int. Edit., 2019, 58(44): 15895-15903

    14. [14]

      OU W, YE X, ZHOU Y. Recent advances in Ni(oxy) hydroxides and Ni sulfides catalysts for oxygen evolution reactions[J]. Coord. Chem. Rev., 2023, 493: 215274

    15. [15]

      ZHANG P L, SHENG X, CHEN X Y, FANG Z Y, JIANG J, WANG M, LI F S, FAN L Z, REN Y S, ZHANG B B, TIMMER B J J, AHLQUIST M S G, SUN L C. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source[J]. Angew. Chem. ‒Int. Edit., 2019, 58(27): 9155-9159

    16. [16]

      KANG Q, LAI D, TANG W, LU Q, GAO F. Intrinsic activity modulation and structural design of NiFe alloy catalysts for an efficient oxygen evolution reaction[J]. Chem. Sci., 2021, 12: 3818-3835

    17. [17]

      ZHOU W J, JIA J, LU J, YANG L J, HOU D M, LI G Q, CHEN S W. Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction[J]. Nano Energy, 2016, 28: 29-43

    18. [18]

      ISLAMOGLU T, GOSWAMI S, Li Z, HOWARTH A J, FARHA O K, HUPP J T. Postsynthetic tuning of metal-organic frameworks for targeted applications[J]. Accounts Chem. Res., 2017, 50(4): 805-813

    19. [19]

      LIAO P Q, HUANG N Y, ZHANG W X, ZHANG J P, CHEN X M. Controlling guest conformation for efficient purification of butadiene[J]. Science, 2017, 356(6343): 1193-1196

    20. [20]

      YAGHI O M, RONG Z C. Decoding complex order in reticular frameworks[J]. Science, 2023, 379(6630): 330-331

    21. [21]

      CHEN Y Z, WANG C, WUN Z Y, XIONG Y, XU Q, YU S H, JIANG H L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis[J]. Adv. Mater., 2015, 27(34): 5010-5016

    22. [22]

      ZHAO M T, YUAN K, WANG Y, LI G D, GUO J, GU L, HU W P, ZHAO H J, TANG Z Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions[J]. Nature, 2016, 539: 76-80

    23. [23]

      JIANG H L, LIU B, LAN Y Q, KURATANI K, AKITA T, SHIOYAMA H, ZONG F Q, XU Q. From metal-organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake[J]. J. Am. Chem. Soc., 2011, 133(31): 11854-11857

    24. [24]

      XING J L, GUO K L, ZOU Z H, CAI M M, DU J, XU C L. In situ growth of well-ordered NiFe-MOF-74 on Ni foam by Fe2+ induction as an efficient and stable electrocatalyst for water oxidation[J]. Chem. Commun., 2018, 54(51): 7046-7049

    25. [25]

      JAGADEESH R V, MURUGESAN K, ALSHAMMARI A S, NEUMANN H, POHL M M, RADNIK J, BELLER M. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines[J]. Science, 2017, 358(6361): 326-332

    26. [26]

      CHEN Y Z, ZHANG R, JIAO L, JIANG H L. Metal-organic framework-derived porous materials for catalysis[J]. Coord. Chem. Rev., 2018, 362: 1-23

    27. [27]

      YIN H Q, ZHANG Z M, LU T B. Ordered integration and heterogenization of catalysts and photosensitizers in metal-/covalent-organic frameworks for boosting CO2 photoreduction[J]. Accounts Chem. Res., 2023, 56(19): 2676-2687

    28. [28]

      WANG F. Solvent-directed syntheses of two hydrogen-bonded metal-organic frameworks[J]. Journal of Liaocheng University (Natural Science Edition), 2024, 37(5): 102-110

    29. [29]

      WANG N N, CHEN Y Z. CoNi-MOF-74/NF Derived CoNi@C/NF hybrid for efficient electrosynthesis of organics[J]. Acta Chim. Sinica, 2024, 82(6): 621-628

    30. [30]

      LI Z H, LIU H, SONG L Y, HUANG T H. Synthesis of dual-metal functionalized MOF-74 and its adsorption properties[J]. Chinese J. Inorg. Chem., 2017, 33(2): 237-242
       

    31. [31]

      ZHANG H B, XU B, MEI H, MEI Y J, ZHANG S Y, YANG Z D, XIAO Z Y, KANG W P, SUN D F. "HOT" alkaline hydrolysis of amorphous MOF microspheres to produce ultrastable bimetal hydroxide electrode with boosted cycling stability[J]. Small, 2019, 15(49): 1904663

    32. [32]

      REN G X, LIU B C, LIU L, HU M H, ZHU J P, XU X, JING P, WU J F, ZHANG J. Regulating the electronic structure of Ni sites in Ni(OH)2 by Ce doping and Cu(OH)2 coupling to boost 5-hydroxymethylfurfural oxidation performance[J]. Inorg. Chem., 2023, 62(31): 12534-12547

    33. [33]

      LI H M, HUANG X Y, LV Y, ZHANG J L, LI W. Highly efficient electrooxidation of 5-hydroxymethylfurfural (HMF) by Cu regulated Co carbonate hydroxides boosting hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2023, 48(97): 38279-38295

  • 加载中
    1. [1]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    2. [2]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    3. [3]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    4. [4]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    8. [8]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    9. [9]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    12. [12]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    13. [13]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    14. [14]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    15. [15]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    16. [16]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    17. [17]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    18. [18]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    19. [19]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    20. [20]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

Metrics
  • PDF Downloads(0)
  • Abstract views(9)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return