Citation: Yingtong FAN, Yujin YAO, Shouhao WAN, Yihang SHEN, Xiang GAO, Cuie ZHAO. Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043 shu

Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors

  • Corresponding author: Cuie ZHAO, iamcezhao@njupt.edu.cn
  • Received Date: 10 February 2025
    Revised Date: 7 May 2025

Figures(5)

  • A two-dimensional copper tetrakis(4-carboxyphenyl)porphyrin (Cu-TCPP, H2TCPP=tetra(4-carboxyphenyl)porphyrin) nanosheet was synthesized via a one-step hydrothermal method, and a Cu-TCPP/AgNWs composite electrode was constructed through a spray coating process. The combination of Cu-TCPP and AgNWs facilitated rapid electron transfer, enhancing the electrochemical performance of flexible transparent supercapacitors (FTSCs). Experimental results showed that the Cu-TCPP/AgNWs-based FTSCs achieved a specific areal capacitance of 5.96 mF·cm-2 with a transmittance of 58.6%. Furthermore, after 180° bending and folding, the capacitance retention remained as high as 87%, demonstrating excellent mechanical flexibility.
  • 加载中
    1. [1]

      DING G L, WANG Y X, ZHANG G X, ZHOU K, ZENG K L, LI Z X, ZHOU Y, ZHANG C, CHEN X L, HAN S T. 2D metal-organic framework nanosheets with time-dependent and multilevel memristive switching[J]. Adv. Funct. Mater., 2018, 29(3): 1806637

    2. [2]

      ZHAO D W, ZHU Y, CHENG W K, CHEN W S, WU Y Q, YU H P. Cellulose-based flexible functional materials for emerging intelligent electronics[J]. Adv. Mater., 2020, 33(28): 2000619

    3. [3]

      HOSSEINI M J M, NAWROCKI R A. A review of the progress of thin-film transistors and their technologies for flexible electronics[J]. Micromachines, 2021, 12(6): 655  doi: 10.3390/mi12060655

    4. [4]

      GONG H, XU Z J, YANG Y, XU Q C, LI X Y, CHENG X, HUANG Y R, ZHANG F, ZHAO J Z, LI S Y, LIU X Y, HUANG Q L, GUO W X. Transparent stretchable and degradable protein electronic skin for biomechanical energy scavenging and wireless sensing[J]. Biosens. Bioelectron., 2020, 169: 112567  doi: 10.1016/j.bios.2020.112567

    5. [5]

      WANG W J, YU G, ATTIQUE S. Dragon mimic shape facilitate ultrahigh-performance flexible all-perovskite tandem solar cells[J]. Sol. RRL, 2023, 7: 2201064  doi: 10.1002/solr.202201064

    6. [6]

      LIU Z M, ZHONG W S, LI J X, HU G S. Preparation of nitrogen doped porous carbons with ultra-high surface areas for high-performance supercapacitors[J]. Chinese J. Inorg. Chem., 2024, 40(4): 677-685  doi: 10.11862/CJIC.20230404

    7. [7]

      CHEN Y, TIAN X Y, CHEN N N, LIU R Q, LING X J, FENG X M. Two-dimensional Ni-Mn MOF grown on carbon cloth for flexible supercapacitors[J]. Chinese J. Inorg. Chem., 2023, 39(12): 2317-2327  doi: 10.11862/CJIC.2023.169

    8. [8]

      GU Y D, ZHANG T, CHEN H, WANG F, PU Y M, GAO C M, LI S B. Mini review on flexible and wearable electronics for monitoring human health information[J]. Nano. Res. Lett., 2019, 14(1): 263  doi: 10.1186/s11671-019-3084-x

    9. [9]

      LEE Y, PARK J, CHOE A, CHO S, KIM J, KO H. Mimicking human and biological skins for multifunctional skin electronics[J]. Adv. Funct. Mater., 2020, 30(20): 1904523  doi: 10.1002/adfm.201904523

    10. [10]

      WANG P P, HU M M, WANG H, CHEN Z, FENG Y P, WANG J Q, LING W, HUANG Y. The evolution of flexible electronics: From nature, beyond nature, and to nature[J]. Adv. Sci., 2020, 7(20): 2001116  doi: 10.1002/advs.202001116

    11. [11]

      CHEN S Q, SHI B B, HE W D, WU X Y, ZHANG X, ZHU Y B, HE S, PENG H H, JIANG Y, GAO X S, FAN Z, ZHOU G F, LIU J M, KEMPA K, GAO J W. Quasifractal networks as current collectors for transparent flexible supercapacitors[J]. Adv. Funct. Mater., 2019, 29(48): 1906618  doi: 10.1002/adfm.201906618

    12. [12]

      GONG S, ZHAO Y M, SHI Q Q, WANG Y, YAP L W, CHENG W L. Self-assembled ultrathin gold nanowires as highly transparent, conductive and stretchable supercapacitor[J]. Electroanalysis, 2016, 28(6): 1298-1304  doi: 10.1002/elan.201600081

    13. [13]

      KANG Z X, WANG X X, FAN L L, ZHANG M H, KANG W P, PANG J, DU X X, GUO H L, WANG R M, SUN D F. In situ generation of intercalated membranes for efficient gas separation[J]. Comm. Chem., 2018, 1(1): 3  doi: 10.1038/s42004-017-0002-y

    14. [14]

      GITTINS J W, BALHATCHET C J, CHEN Y, LIU C, MADDEN D G, BRITTO S, GOLOMB M J, WALSH A, FAIREN-JIMENEZ D, DUTTON S E, FORSE A C J. Insights into the electric double-layer capacitance of two-dimensional electrically conductive metal-organic frameworks[J]. J. Mater. Chem. A, 2021, (29): 16006

    15. [15]

      LIU X X, SHI C D, ZHAI C W, CHENG M L, LIU Q, WANG G X. Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material[J]. ACS Appl. Mater. Interfaces, 2016, 8(7): 4585  doi: 10.1021/acsami.5b10781

    16. [16]

      XIAO X H, TAO S S, LIAN H M, TIAN Y, DENG W T, HOU H S, ZOU G Q, JI X B. Unveiling the microscopic origin of ultrahigh initial coulombic efficiency of high-entropy metal-organic frameworks for sodium storage[J]. ACS Nano, 2024, 18(41): 28444  doi: 10.1021/acsnano.4c11401

    17. [17]

      XING H F, HAN Y, HUANG X, ZHANG C Y, LYU M M, CHEN K J, WANG T. Recent progress of low-dimensional metal-organic frameworks for aqueous zinc-based batteries[J]. Small, 2024, 20: 2402998

    18. [18]

      RONG H R, WANG X M, WEI Y H, CHEN X J, LAI L F, LIU Q. A layered Co-MOF based electrode material of supercapacitor with high-capacity[J]. Chinese J. Inorg. Chem., 2021, 37(12): 2227-2234  doi: 10.11862/CJIC.2021.230

    19. [19]

      JIANG Q Y, SHA Y Y, CHEN C, CHEN X, LIU W L, HUANG H, LIU H J, LIU Q. Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries[J]. Chinese J. Inorg. Chem., 2024, 40(4): 657-668  doi: 10.11862/CJIC.20240004

    20. [20]

      BAI W S, LI S J, MA J P, CAO W, ZHENG J B. Ultrathin 2D metal-organic framework (nanosheets and nanofilms)-based xD-2D hybrid nanostructures as biomimetic enzymes and supercapacitors[J]. J. Mater. Chem. A, 2019, 7(15): 9086  doi: 10.1039/C9TA00311H

    21. [21]

      CAMPBELL M G, DINCĂ M. Metal-organic frameworks as active materials in electronic sensor devices[J]. Sensors, 2017, 17(5): 1108  doi: 10.3390/s17051108

    22. [22]

      BUREEKAEW S, HORIKE S, HIGUCHI M, MIZUNO M, KAWAMURA T, TANAKA D, NOBUHIRO Y, KITAGAWA S. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity[J]. Nat. Mater., 2009, 8(10): 831-836  doi: 10.1038/nmat2526

    23. [23]

      ZHANG A T, ZHANG Q, HUANG J L, FU H C, ZONG H W, GUO H W. NiMnCo-LDH in-situ derived from ZIF-67@ZnO as self-supporting electrode for asymmetric supercapacitor device[J]. Chem. Eng. J., 2024, 487: 150587  doi: 10.1016/j.cej.2024.150587

    24. [24]

      CHENG J Y, CHEN S M, CHEN D, DONG L B, WANG J J, ZHANG T L, JIAO T P, LIU B, WANG H, KAI J J, ZHANG D Q, ZHENG G P, ZHI L J, KANG F Y, ZHANG W J. Editable asymmetric all- solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal-organic framework/reduced graphene oxide self-assembled papers[J]. J. Mater. Chem. A, 2018, 6(41): 20254-20266  doi: 10.1039/C8TA06785F

    25. [25]

      CAO F F, ZHAO M T, YU Y F, CHEN B, HUANG Y, YANG J, CAO X H, LU Q P, ZHANG X, ZHANG Z C, TAN C L, ZHANG H. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application[J]. J. Am. Chem. Soc., 2016, 138(22): 6924-6927  doi: 10.1021/jacs.6b02540

    26. [26]

      YAO H, ZHANG F, ZHANG G W, LUO H Y, LIU L, SHEN M H, YANG Y Y. A novel two-dimensional coordination polymer-polypyrrole hybrid material as a high-performance electrode for flexible supercapacitor[J]. Chem. Eng. J., 2018, 334: 2547-2557  doi: 10.1016/j.cej.2017.12.013

    27. [27]

      WANG W K, XU H T, ZHAO W W, ZHAO J, JIANG M Y, LIU S J, HANG W, ZHAO Q. Porphyrin-assisted synthesis of hierarchical flower-like polypyrrole arrays based flexible electrode with high areal capacitance[J]. Chem. Eng. J., 2022, 428: 131089  doi: 10.1016/j.cej.2021.131089

    28. [28]

      WU X Y, QIU Y P, CAI W R, LI J Y, WU D T, XU L D, KONG Y. Melamine foam supported NiCo2S4/Ag nanowires with charging/discharging induced activation effect for asymmetric supercapacitors[J]. Chem. Eng. J., 2024, 484: 149667  doi: 10.1016/j.cej.2024.149667

    29. [29]

      LIU X, LI D D, CHEN X, LAI W Y, HUANG W. Highly transparent and flexible all-solid-state supercapacitors based on ultralong silver nanowire conductive networks[J]. ACS Appl. Mater. Interfaces, 2018, 10(38): 32536-32542  doi: 10.1021/acsami.8b10138

    30. [30]

      ZHAO M T, WANG Y X, MA Q L, HUANG Y, ZHANG X, PING J F, ZHANG Z C, LU Q P, YU Y F, XU H, ZHAO Y L, ZHANG H. Ultrathin 2D metal-organic framework nanosheets[J]. Adv. Mater., 2015, 27: 7372-7378  doi: 10.1002/adma.201503648

    31. [31]

      ZHOU Y M, XIONG T Y, LU J H, YU P, JIANG Y N, XIA F, MAO L Q. Highly-efficient ion gating through self-assembled two-dimensional photothermal metal-organic framework membrane[J]. Angew. Chem. ‒Int. Edit., 2023, 66: e202302997

    32. [32]

      WANG Y D, MAO Z H, CHEN Q, KOH K, HU X J, CHEN H X. Rapid and sensitive detection of PD-L1 exosomes using Cu-TCPP 2D MOF as a SPR sensitizer[J]. Biosen. Bioelectron., 2022, 201: 113954  doi: 10.1016/j.bios.2021.113954

    33. [33]

      TIAN M, PEI F, YAO M S, FU Z H, LIN L L, WU G D, XU G, KITAGAWA H, FANG X L. Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries[J]. Energy Storage Mater., 2019, 21: 14-21  doi: 10.1016/j.ensm.2018.12.016

    34. [34]

      LIU J, CHEN G H, CHEN Y Q, JIANG J T, XIAO X, WU Q, YANG L J, WANG X Z, HU Z. Boosting the supercapacitance performance of mesostructured carbon nanocages by enlarging pore sizes via carbothermal reduction[J]. Acta Chim. Sinica, 2023, 81(7): 709-716

    35. [35]

      ZHANG C F, HIGGINS T M, PARK S H, O'BRIEN S E, LONG D H, COLEMAN J N, NICOLOSI V. Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT: PSS conductive ultrathin films[J]. Nano Energy, 2016, 28: 495-505  doi: 10.1016/j.nanoen.2016.08.052

    36. [36]

      ZHAO W W, CHEN T T, WANG W K, BI S H, JIANG M Y, ZHANG K Y, LIU S J, HUANG W, ZHAO Q. Layer-by-layer 2D ultrathin conductive Cu3(HHTP)2 film for high-performance flexible transparent supercapacitors[J]. Adv. Mater. Interfaces, 2021, 8(11): 2100308  doi: 10.1002/admi.202100308

    37. [37]

      SINGH S B, KSHETRI T, SINGH T I, KIM N H, LEE J H. Embedded PEDOT: PSS/AgNFs network flexible transparent electrode for solid-state supercapacitor[J]. Chem. Eng. J., 2019, 359: 197-207  doi: 10.1016/j.cej.2018.11.160

    38. [38]

      SORAM B S, THANGJAM I S, DAI J Y, KSHETRI T, KIM N H, LEE J H. Flexible transparent supercapacitor with core-shell Cu@Ni@NiCoS nanofibers network electrode[J]. Chem. Eng. J., 2020, 395: 125019  doi: 10.1016/j.cej.2020.125019

    39. [39]

      GINTING R T, OVHAL M M, KANG J W. A novel design of hybrid transparent electrodes for high performance and ultra-flexible bifunctional electrochromic-supercapacitors[J]. Nano Energy, 2018, 53: 650-657  doi: 10.1016/j.nanoen.2018.09.016

  • 加载中
    1. [1]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    2. [2]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    6. [6]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    7. [7]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    10. [10]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    11. [11]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    12. [12]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    13. [13]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    14. [14]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    15. [15]

      Yihan XueXue HanJie ZhangXiaoru Wen . Efficient capacitive desalination over NCQDs decorated FeOOH composite. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    19. [19]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    20. [20]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

Metrics
  • PDF Downloads(0)
  • Abstract views(9)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return