Citation: Qianqian ZHU, Lihui XU, Hong PAN, Chengjian YAO, Hong ZHAO, Nan MA, Xiaolin SHI, Zihan SHEN, Weijun ZHANG, Zhongjian WANG. Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040 shu

Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties

  • Corresponding author: Lihui XU, xulh0915@163.com
  • Received Date: 9 February 2025
    Revised Date: 11 June 2025

Figures(9)

  • A one-step activation-carbonization method was adopted to prepare waste cotton fabric-based carbon wave-absorption materials (CCF) with a porous structure using waste cotton fabrics as raw materials and ZnCl2 as the activation agent. The impact of different ZnCl2 mass fraction on the wave absorption performance of CCF was explored. The results showed that ZnCl2 could effectively enrich the pore structure of CCF and enhance its wave-absorption property. The specific surface area of CCF-10 prepared at a carbonization temperature of 700 ℃ (under N2 atmosphere) and a ZnCl2 mass concentration of 10% was as high as 1 310 m2·g-1, and its minimum reflection loss at a thickness of 2.0 mm reached -35.02 dB with an effective absorption bandwidth of 5.6 GHz.
  • 加载中
    1. [1]

      LU Y H, ZHANG S L, HE M Y, WEI L, CHEN Y, LIU R N. 3D cross-linked graphene or/and MXene based nanomaterials for electromagnetic wave absorbing and shielding[J]. Carbon, 2021,178:413-435.

    2. [2]

      ZHU S Y, ZHOU Y M, LV X L, LI H Y, FENG M X, LI Z H, HE M. Multifunctional carbon aerogels loaded with pea-pod-like carbon nanotubes for outstanding electromagnetic wave absorption performance[J]. J. Colloid Interface Sci., 2024,669:23-31.

    3. [3]

      ZHOU X F, JIA Z R, ZHANG X X, WANG B B, WU W, LIU X H, XU B H, WU G L. Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorp- tion and wide absorption bandwidth[J]. J. Mater. Sci. Technol., 2021,87:120-132.

    4. [4]

      RUIZ-PEREZ F, LÓPEZ-ESTRADA S M, TOLENTINOHERNÁNDEZ R V, CABALLERO-BRIONES F. Carbon-based radar absorbing materials: A critical review[J]. J. Sci., 2022,7(3)100454.

    5. [5]

      ZHAO R, LIANG B Q, SHI Y X, DONG Q, LI T X, GU J W, MA Y, ZHANG J, MELHI S, ALSHAMMARI A S, EL-BAHY Z M, GUO Z H. Recent progress of carbon-based magnetic fibers for electromagnetic wave absorption[J]. Carbon, 2024,229119513.

    6. [6]

      CHEN Y, TIAN X Y, CHEN N N, LIU R Q, LIN X J, FENG X M. Carbon cloth growth of two-dimensional Ni-MnMOF for flexible supercapacitors[J]. Chinese J. Inorg. Chem., 2023,39(12):2317-2327.

    7. [7]

      CAI Y F, XU L H, PAN H, ZHAO H, YAO C J, YANG Q, SHEN Y, WANG L M, DOU M R, TENG Y, ZHANG Y X, WANG Y H. Durable superhydrophobic cotton fabrics with electromagnetic wave absorption based on MoS2/RGO composites[J]. Cellulose, 2024,31:10045-10058.

    8. [8]

      NAQVI S T A, SINGH C J, GODARA S K. Functionalization and synthesis of biomass and its composites as renewable, lightweight and ecoefficient microwave-absorbing materials: A review[J]. J. Alloy. Compd., 2023,968171991.

    9. [9]

      WU Z H, REN A W, LIU Y J, XUE Q H, NIU D, CHANG J J. Classification of biomass-derived carbon-based composite wave-absorbing materials, wave-absorbing mechanism and research progress[J]. Acta Mater. Compos. Sin., 2024,41(8):3910-3934.

    10. [10]

      SHI Y Y, YU L J, LI K, LI S Z, DONG Y B, ZHU Y F, FU Y Q, MENG F B. Well-matched impedance of polypyrrole-loaded cotton non-woven fabric/polydimethylsiloxane composite for extraordinary microwave absorption[J]. Compos. Sci. Technol., 2020,197108246.

    11. [11]

      JIN J, LONG H S, LIU H, GUO Y, BAI T T, XU B B, AMIN M A, QIU H, HELAL M H, LIU C T, SHEN C Y, EL-BAHY Z M, GUO Z H. Regulating microstructure and composition by carbonizing in-situ grown metal-organic frameworks on cotton fabrics for boosting electromagnetic wave absorption[J]. Nano Res., 2024,17(8):7290-7300.

    12. [12]

      CHENG J B, ZHAO H B, ZHANG A N, WANG Y Q, WANG Y Z. Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption[J]. J. Mater. Sci. Technol., 2022,126:266-274.

    13. [13]

      CHEN X L, LAN D, ZHOU L T, ZENG Z, LIU Y K, DU S X, ZOU Z Y, WU G L. Rational construction of ZnFe2O4 decorated hollow carbon cloth towards effective electromagnetic wave absorption[J]. Ceram. Int., 2024,50(13):24549-24557.

    14. [14]

      YOU Y Z, ZHANG X K, LI P F, LEI F H, JIANG J X. Co-production of xylooligosaccharides and activated carbons from Camellia oleifera shell treated by the catalysis and activation of zinc chloride[J]. Bioresour. Technol., 2020,306123131.

    15. [15]

      AKL M A, MOSTAFA A G, AL-AWADHI M, AL-HARWI W S, EL-ZENY A S. Zinc chloride activated carbon derived from date pits for efficient biosorption of brilliant green: Adsorption characteristics and mechanism study[J]. Appl. Water Sci., 2023,13(12)226.

    16. [16]

      ZHOU X F, JIA Z R, FENG A L, WANG K K, LIU X H, CHEN L, CAO H J, WU G L. Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass[J]. Compos. Commun., 2020,21100404.

    17. [17]

      WU Z H, MENG Z Z, YAO C, DENG Y, ZHANG G L, WANG Y B. Rice husk derived hierarchical porous carbon with lightweight and efficient microwave absorption[J]. Mater. Chem. Phys., 2022,275125246.

    18. [18]

      CHENG J, CAI L, SHI Y Y, PAN F, DONG Y Y, ZHU X J, JIANG H J, ZHANG X, XIANG Z, LU W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption[J]. Chem. Eng. J., 2022,431134284.

    19. [19]

      ZHANG H B, CHENG J Y, WANG H H, HUANG Z H, ZHENG Q B, ZHENG G P, ZHANG D Q, CHE R C, CAO M S. Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation[J]. Adv. Funct. Mater., 2022,32(6)2108194.

    20. [20]

      LIU Z Y, WU J F, XU W Z, TARIQ M R, ZHANG B L. Doped porous carbon spheres with controllable vesicle structure: Preparation and the effects of pore size on electromagnetic wave absorption properties[J]. Small, 2024,202402000.

    21. [21]

      WU Z H, LI J Y, LI P, QI J, CHANG J J, NIU D, REN A W. Mechanism of wave absorption in biomass-derived porous carbon-based wave-absorbing materials[J]. J. Chin. Ceram. Soc., 2025,53(1):161-172.

    22. [22]

      LIN X X, ZHOU Y H, HONG J F, WEI X F, LIU B, WANG C C. Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption[J]. Chin. Chem. Lett., 2024,35109835.

    23. [23]

      LI S Y, WANG Z, TIAN X X, JIANG J M, WANG J F, ZHOU J X, JIANG J N, MA L S, QU S B. Design and synthesis of porous nitrogen-doped Co@C composites with broadband microwave absorption performance[J]. Diam. Relat. Mater., 2022,130109424.

    24. [24]

      YU J A, LUO H, WANG Z H, LV S H, CHEN F, CHENG Y Z, LI X C. Construction of multi-interface magnetic FeMnC modified carbon/graphene aerogels for broadband microwave absorption[J]. J. Alloy. Compd., 2024,1002175499.

    25. [25]

      WANG B L, WU Q, FU Y G, LIU T. A review on carbon/magnetic metal composites for microwave absorption[J]. J. Mater. Sci. Technol., 2021,86:91-109.

    26. [26]

      WANG H Y, WU X F, WANG Q Y, CHEN S Y, CHEN G, DONG C J, GUAN H T. NiO nanosheets on pine pollen- derived porous carbon: Construction of interface to enhance microwave absorption[J]. J. Mater. Sci.-Mater. Electron., 2021,32:25656-25667.

    27. [27]

      BAI L H, XING H L, CHEN W X, YANG P, JI X L. Preparation of Ni/C composite microwave absorbers with high performance by controlling nickel source[J]. Colloid Surf. A - Physicochem. Eng. Asp., 2023,656130483.

    28. [28]

      PANG H F, DUAN Y P, HUANG L X, SONG L L, LIU J, ZHANG T, YANG X, LIU J Y, MA X R, DI G R, LIU X J. Research advances in composition, structure and mechanisms of microwave absorbing materials[J]. Compos. Pt. B-Eng., 2021,224109173.

    29. [29]

      WANG S J, ZHANG X, TANG Y X, HAO S Y, ZHENG S N, QIAO J, WANG Z, WU L L, LIU J R, WANG F L. Facile fabrication of biomass chitosan- derived magnetic carbon aerogels as multifunctional and high-efficiency electromagnetic wave absorption materials[J]. Carbon, 2024,216118528.

    30. [30]

      ZHOU W J, LIU N, LI C P, YU L M, ZHANG Z M, LI C C, YAN X F. Electromagnetic wave absorption of inexpensive C/ZnO composites derived from zinc-based acrylate resins[J]. Ceram. Int., 2021,47:27002-27011.

    31. [31]

      YUE J, YU J Q, JIANG S H, CHEN Y M. Biomass carbon materials with porous array structures derived from soybean dregs for effective electromagnetic wave absorption[J]. Diam. Relat. Mater., 2022,126109054.

    32. [32]

      NIE Y J, LIU J X, ZHU H H, CHEN H, ZHOU W. A novel biomass-derived carbon@ZnO@ZnSe composites for efficient electromagnetic wave absorption[J]. Mater. Sci. Eng. B - Adv. Funct. Solid - State Mater., 2024,309117628.

  • 加载中
    1. [1]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    2. [2]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    3. [3]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    4. [4]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    5. [5]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    6. [6]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    7. [7]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    8. [8]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    9. [9]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    12. [12]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    13. [13]

      Jiamin Zhang Zhen Fan Jianzhong Du . Integrated Teaching Method Combining Domestic and International Perspectives: A Case Study on Cultivating Innovative Talents in Polymeric Biomaterials. University Chemistry, 2025, 40(7): 156-160. doi: 10.12461/PKU.DXHX202409131

    14. [14]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    15. [15]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    16. [16]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    17. [17]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    18. [18]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    19. [19]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    20. [20]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(0)
  • Abstract views(5)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return