High-performance supercapacitor based on 1D cobalt-based coordination polymer
- Corresponding author: Qi LIU, liuqi62@163.com; liuqi@cczu.edu.cn
Citation:
Hongren RONG, Gexiang GAO, Zhiwei LIU, Ke ZHOU, Lixin SU, Hao HUANG, Wenlong LIU, Qi LIU. High-performance supercapacitor based on 1D cobalt-based coordination polymer[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(6): 1183-1195.
doi:
10.11862/CJIC.20250034
GOODENOUGH J B. Electrochemical energy storage in a sustainable modern society[J]. Energy Environ. Sci., 2014,7:14-18. doi: 10.1039/C3EE42613K
SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nat. Mater., 2008,7(11):845-854. doi: 10.1038/nmat2297
SHAO Y L, EL-KADY M F, SUN J Y, LI Y G, ZHANG Q H, ZHU M F, WANG H Z, DUNN B, KANER R B. Design and mechanisms of asymmetric supercapacitors[J]. Chem. Rev., 2018,118:9233-9280. doi: 10.1021/acs.chemrev.8b00252
WANG G P, ZHANG L, ZHANG J J. A review of electrode materials for electrochemical supercapacitors[J]. Chem. Soc. Rev., 2012,41797828.
ZHAO J, JIANG Y F, FAN H, LIU M, ZHUO O, WANG X Z, WU Q, YANG L J, MA Y W, HU Z. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship[J]. Adv. Mater., 2017,291604569. doi: 10.1002/adma.201604569
LI Y, XIE H Q, LI Y J, YAMAUCHI Y, HENZIE J. Metalorganic framework derived CoO x/carbon composite array for high-performance supercapacitors[J]. ACS Appl. Mater. Interfaces, 2021,13:41649-41656. doi: 10.1021/acsami.1c10998
LI G C, MAO K, LIU M, YAN M L, ZHAO J, ZENG Y, YANG L J, WU Q, WANG X Z, HU Z. Achieving ultrahigh volumetric energy storage by compressing nitrogen and sulfur dual-doped carbon nanocages via capillarity[J]. Adv. Mater., 2020,322004632. doi: 10.1002/adma.202004632
CHEN H X, LU X Y, ZHANG L L, SUI D P, WANG C, MENG F B, QI W. Enhanced electrochemical performance of MnO2 nanoparticles: Graphene aerogels as conductive substrates and capacitance contributors[J]. Dalton Trans., 2021,50:8776-8784. doi: 10.1039/D1DT00404B
ZHENG S S, XUE H G, PANG H. Supercapacitors based on metal coordination materials[J]. Coord. Chem. Rev., 2018,373:2-21. doi: 10.1016/j.ccr.2017.07.002
DU R, WU Y F, YANG Y C, ZHAI T T, ZHOU T, SHANG Q Y, ZHU L H, SHANG C X, GUO Z X. Porosity engineering of MOF-based materials for electrochemical energy storage[J]. Adv. Energy Mater., 2021,112100154. doi: 10.1002/aenm.202100154
YANG J, XIONG P X, ZHENG C, QIU H Y, WEI M D. Metal-organic frameworks: A new promising class of materials for a high performance supercapacitor electrode[J]. J. Mater. Chem. A, 2014,21664016644.
YANG J, MA Z H, GAO W X, WEI M D. Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode[J]. Chem. -Eur. J., 2017,23:631-636. doi: 10.1002/chem.201604071
LIU Q, LIU X X, SHI C D, ZHANG Y P, FENG X J, CHENG M L, SU S, GU J D. A copper-based layered coordination polymer: Synthesis, magnetic properties and electrochemical performance in super capacitors[J]. Dalton Trans., 2015,44:19175-19184. doi: 10.1039/C5DT02918J
LIU X X, SHI C D, ZHAI C W, CHENG M L, LIU Q, WANG G X. Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material[J]. ACS Appl. Mater. Interfaces, 2016,8:4585-4591. doi: 10.1021/acsami.5b10781
SU L X, WANG X M, JIANG Q Y, ZHANG H M, LU Y W, LIU Q. A 2D Co-based coordination polymer [KCo(pa)(OH)] n as the electrode material of supercapacitors with higher-capacity[J]. Chinese J. Inorg. Chem., 2023,39(8):1481-1488.
YU L L, WANG X M, CHENG M L, RONG H R, SONG Y D, LIU Q. A 3D copper coordination polymer constructed by 3-methyl-1H-pyrazole-4-carboxylic acid with higher capacitance for supercapacitors[J]. Cryst. Growth Des., 2018,18:280-285. doi: 10.1021/acs.cgd.7b01219
GAO G X, WANG X M, MA Y W, RONG H R, LAI L F, LIU Q. A 3D Co5-cluster-based MOF as a high-performance electrode material for supercapacitor[J]. Ionics, 2020,26:5189-5197. doi: 10.1007/s11581-020-03649-8
MA Y W, GAO G X, SU H Q, RONG H R, LAI L F, LIU Q. A Cu4 cluster-based MOF as a supercapacitor electrode material with ultrahigh capacitance[J]. Ionics, 2021,27:1699-1707. doi: 10.1007/s11581-021-03954-w
SHEBERLA D, BACHMAN J C, ELIAS J S, SUN C J, YANG S H, DINCǍ M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nat. Mater., 2017,16:220-225. doi: 10.1038/nmat4766
LI W H, DING K, TIAN H R, YAO M S, NATH B, DENG W H, WANG Y B, XU G. Conductive metalorganic framework nanowire array electrodes for high-performance solid-state super capacitors[J]. Adv. Funct. Mater., 2017,271702067. doi: 10.1002/adfm.201702067
WANG L, FENG X, REN L T, PIAO Q H, ZHONG J Q, WANG Y B, LI H W, CHEN Y F, WANG B. Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI[J]. J. Am. Chem. Soc., 2015,137:4920-4923. doi: 10.1021/jacs.5b01613
RAJAK R, SARAF M, MOHAMMADA A, MOBIN S M. Design and construction of a ferrocene based inclined polycatenated Co-MOF for supercapacitor and dye adsorption applications[J]. J. Mater. Chem. A, 2017,5:17998-18011. doi: 10.1039/C7TA03773B
WANG K B, CAO X R, WANG S, ZHAO W J, XU J Y, WANG Z K, WU H. Interpenetrated and polythreaded CoⅡ-organic frameworks as a supercapacitor electrode material with ultrahigh capacity and excellent energy delivery efficiency[J]. ACS Appl Mater. Interfaces, 2018,10:9104-9115. doi: 10.1021/acsami.7b16141
SANATI S, ABAZARI R, MORSALI A, KIRILLOV A M, JUNK P C, WANG J. An asymmetric supercapacitor based on a non-calcined 3D pillared cobalt(Ⅱ) metal-organic framework with long cyclic stability[J]. Inorg. Chem., 2019,58:16100-16111. doi: 10.1021/acs.inorgchem.9b02658
KANG L, SUN S X, KONG L B, LANG J W, LUO Y C. Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors[J]. Chin. Chem. Lett., 2014,25:957-961. doi: 10.1016/j.cclet.2014.05.032
RAJAK R, SARAF M, MOBIN S M. Mixed-ligand architected unique topological heterometallic sodium/cobalt-based metal-organic framework for high-performance supercapacitors[J]. Inorg. Chem., 2020,59:1642-1652. doi: 10.1021/acs.inorgchem.9b02762
YAN Y, GU P, ZHENG S S, ZHENG M B, PANG H, XUE H G. Facile synthesis of an accordion-like Ni-MOF superstructure for highperformance flexible supercapacitors[J]. J. Mater. Chem. A, 2016,4:19078-19085. doi: 10.1039/C6TA08331E
DENG T, ZHANG W, ARCELUS O, WANG D, SHI X Y, ZHANG X Y, CARRASCO J, ROJO T, ZHENG W T. Vertically co-oriented two dimensional metal-organic frameworks for packaging enhanced supercapacitive performance[J]. Commun. Chem., 2018,16. doi: 10.1038/s42004-017-0005-8
WANG K B, WANG Z K, WANG X, ZHOU X Q, TAO Y H, WU H. Flexible long-chain-linker constructed Ni-based metal-organic frameworks with 1D helical channel and their pseudo-capacitor behavior studies[J]. J. Power Sources., 2018,377:44-51. doi: 10.1016/j.jpowsour.2017.11.087
XIANG Y H, YAN X L, WANG X, LI S N, JIANG Y S, HU M C, ZHAI Q Z. Excellent supercapacitor performance of robust nickelorganic framework materials achieved by tunable porosity, inner-cluster redox, and in situ fabrication with graphene oxide[J]. Cryst. Growth Des., 2018,18:6035-6045. doi: 10.1021/acs.cgd.8b00881
LIU K, DENG L M, LI H D, BAO Y X, XIAO Z Y, LI B, ZHOU Q, GENG Y L, WANG L. Two isostructural Co/Ni fluorinecontaining metalorganic frameworks for dye adsorption and supercapacitor[J]. J. Soild State Chem., 2019,275:1-7. doi: 10.1016/j.jssc.2019.03.052
XUE Y Y, LI S N, JIANG Y C, HU M C, ZHAI Q G. Quest for 9-connected robust metal-organic framework platforms on the base of [M3(O/OH)(COO)6(pyridine)3] cluster as excellent gas separation and asymmetric supercapacitor materials[J]. J. Mater. Chem. A, 2019,7:4640-4650. doi: 10.1039/C8TA09080G
CHOI K M, JEONG H M, PARK J H, ZHANG Y B, KANG J K, YAGHI O M. Supercapacitors of nanocrystalline metal-organic frameworks[J]. ACS Nano, 2014,8(7):7451-7457. doi: 10.1021/nn5027092
RAMACHANDRAN R, ZHAO C H, LUO D, WANG K, WANG F. Synthesis of copper benzene-1, 3, 5-tricarboxylate metal organic frameworks with mixed phases as the electrode material for supercapacitor applications[J]. Appl. Surf. Sci., 2018,460:33-39. doi: 10.1016/j.apsusc.2017.11.271
JIAO Y, PEI J, CHEN D H, YAN C S, HU Y Y, ZHANG Q, CHEN G. Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors[J]. J. Mater. Chem. A, 2017,5:1094-1102. doi: 10.1039/C6TA09805C
RAJAK R, SARAF M, MOBIN S M. Robust heterostructures of a bimetallic sodium-zinc metal-organic framework and reduced graphene oxide for high-performance supercapacitors[J]. J. Mater. Chem. A, 2019,7:1725-1736. doi: 10.1039/C8TA09528K
KAZEMI S H, HOSSEINZADEH B, KAZEMI H, KIANI M A, HAJATI S. Facile synthesis of mixed metal-organic frameworks: Electrode materials for supercapacitors with excellent areal capacitance and operational stability[J]. ACS Appl. Mater. Interfaces, 2018,10:23063-23073. doi: 10.1021/acsami.8b04502
WANG Y Z, LIU Y X, WANG H Q, LIU W, LI Y, ZHANG J F, HOU H, YANG J L. Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes[J]. ACS Appl. Energy Mater., 2019,2:2063-2071. doi: 10.1021/acsaem.8b02128
DEKA R, KUMAR V, RAJAK R, MOBIN S M. 2D layered nickelbased coordination polymer for supercapacitive performance[J]. Sustain. Energy Fuels, 2022,6:3014-3024. doi: 10.1039/D2SE00527A
LU Y B, ZHANG G X, ZHOU H J, CAO S, ZHANG Y, WANG S L, PANG H. Enhanced active sites and stability in nano-MOFs for electrochemical energy storage through dual regulation by tannic acid[J]. Angew. Chem. -Int. Edit., 2023,62e202311075. doi: 10.1002/anie.202311075
TAI H B, DING W Y, ZHANG X, LIANG K C, RONG Y, LIU Z L. Upgrading structural conjugation in 3D Ni-based metal-organic frameworks for promoting electrical conductivity and specific capacitance[J]. Inorg. Chem., 2024,63:18083-18091. doi: 10.1021/acs.inorgchem.4c02829
LIU J J, ZHOU Y, XIE Z, LI Y, LIU Y P, SUN J, MA Y H, TERASAKI O, CHEN L. Conjugated copper-catecholate framework electrodes for efficient energy storage[J]. Angew. Chem. - Int. Edit., 2020,59:1081-1086. doi: 10.1002/anie.201912642
XIA Z Q, JIA X, GE X, REN C T, YANG Q, HU J, CHEN Z, HAN J, XIE G, CHEN S P, GAO S L. Tailoring electronic structure and size of ultrastable metalated metal-organic frameworks with enhanced electroconductivity for high-performance supercapacitors[J]. Angew. Chem. -Int. Edit., 2021,60:10228-10238. doi: 10.1002/anie.202100123
ZHANG P P, WANG M C, LIU Y N, FU Y B, GAO M M, WANG G, WANG F X, WANG Z Y, CHEN G B, YANG S, LIU Y W, DONG R H, YU M H, LU X, FENG X L. Largely pseudocapacitive 2D conjugated metal-organic framework anodes with lowest unoccupied molecular orbital localized in nickel-bis(dithiolene) linkages[J]. J. Am. Chem. Soc., 2023,145:6247-6256. doi: 10.1021/jacs.2c12684
BI S, BANDA H, CHEN M, NIU L, CHEN M Y, WU T Z, WANG J S, WANG R X, FENG J M, CHEN T Y, DINCA M, KORNYSHEV A A, FENG G. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes[J]. Nat. Mater., 2020,19:552-558. doi: 10.1038/s41563-019-0598-7
WANG K B, WANG S, LIU J D, GUO Y X, MAO F F, WU H, ZHANG Q C. Fe-based coordination polymers as battery-type electrodes in semi-solid-state battery-supercapacitor hybrid devices[J]. ACS Appl. Mater. Interfaces, 2021,13:15315-15323. doi: 10.1021/acsami.1c01339
WANG K B, LI Q Q, REN Z J, LI C, CHU Y, WANG Z K, ZHANG M D, WU H, ZHANG Q C. 2D metal-organic frameworks (MOFs) for high-performance batcap hybrid devices[J]. Small, 2020,162001987. doi: 10.1002/smll.202001987
WANG K B, BI R, HUANG M L, LV B, WANG H J, LI C, WU H, ZHANG Q C. Porous cobalt metal-organic frameworks as active elements in battery-supercapacitor hybrid devices[J]. Inorg. Chem., 2020,59:6808-6814. doi: 10.1021/acs.inorgchem.0c00060
WU Q S, BIGDELI F, ROUHANI F, GAO X M, KAVIANI H, LI H J, WANG W, LIU K G, HU M L, CAI X Q, MORSALI A. New 3D porous silver nanopolycluster as a highly effective super capacitor electrode: Synthesis and study of the optical and electrochemical properties[J]. Inorg. Chem., 2021,60:1523-1532. doi: 10.1021/acs.inorgchem.0c02875
HANGARTER C M, DYATKIN B, LASKOSKI M, PALENIK M C, MILLER J B, TYAGI M, KLUG C A. A cobalt-based layered MOF material for supercapacitor applications Carlos[J]. J. Energy Storage, 2024,89111476. doi: 10.1016/j.est.2024.111476
FENG D W, LEI T, LUKATSKAYA M R, PARK J, HUANG Z H, LEE M, SHAW L, CHEN S C, YAKOVENKO A A, KULKARNI A, XIAO J P, FREDRICKSON K, TOK J B, ZOU X D, CUI Y, BAO Z N. Robust and conductive 2D metal-organic frameworks with exceptionally high volumetric and areal capacitance[J]. Nat. Energy, 2018,3:30-36. doi: 10.1038/s41560-017-0044-5
LIU K G, ROUHANI F, MOGHANNI-BAVIL-OLYAEI H, WEI X W, GAO X M, LI J Z, YAN X W, HU M L, MORSALI A. A conductive 1D high-nucleus silver polymer as a brilliant non-hybrid supercapacitor electrode[J]. J. Mater. Chem. A, 2020,8:12975-12983. doi: 10.1039/D0TA04199H
RONG H R, SONG P, GAO G X, JIANG Q Y, CHEN X J, SU L X, LIU W L, LIU Q. A 3D Mn-based MOF as a high-performance supercapacitor electrode[J]. Dalton Trans., 2023,52:1962-1969. doi: 10.1039/D2DT02857C
RONG H R, GAO G X, LIU X C, CHEN X J, JIANG Q Y, SONG X T, SHEN D Z, LIU W L, LIU Q. Asymmetric supercapacitor based on a 1D Cu-coordination polymer with high cycle stability[J]. Cryst. Growth Des., 2023,23:5437-5445. doi: 10.1021/acs.cgd.2c01305
RONG H R, WANG X M, MA Y W, GAO G X, SU H Q, LAI L F, LIU Q. 3D cobaltbased MOF [KCo7(OH)3(ip)6(H2O)4] ·12H2O as a highcapacity electrode materials for supercapacitors[J]. Chinese J. Inorg. Chem., 2021,37(2):206-212.
ZHOU S Y, LIU T Q, STRØMME M, XU C. Electrochemical doping and structural modulation of conductive metal-organic frameworks[J]. Angew. Chem. -Int. Edit., 2024,63e202318387. doi: 10.1002/anie.202318387
RONG H R, WANG X M, WEI Y H, CHEN X J, LAI L F, LIU Q. A layered Co-MOF based electrode material of supercapacitor with high-capacity[J]. Chinese J. Inorg. Chem., 2021,37(12):2227-2234. doi: 10.11862/CJIC.2021.230
LU Y W, SU L X, YANG B Z, CHEN X J, ZHANG H M, LIU Q. A high-performance air-rechargeable aqueous Zn/organic battery with Zn2+ and H+ storage[J]. Chem. Eng. J., 2024,484149531. doi: 10.1016/j.cej.2024.149531
DING W, XIAO L Y, LV L P, WANG Y. Redox-active organic electrodes materials for supercapacitors[J]. Batterie Supercaps, 2023,6e202300278. doi: 10.1002/batt.202300278
CHENG M L, WANG Q H, BAO J T, WU Y J, SUN L, YANG B X, LIU Q. Synthesis and structural diversity of d10 metal coordination polymers constructed from new semi-rigid bis(3-methyl-1H-pyrazole-4-carboxylic acid)alkane ligands[J]. New J. Chem., 2017,41:5151-5160. doi: 10.1039/C7NJ00835J
SU H Q, SONG Y D, HU Y, MA Y W, LIU W L, LIU H J, LIU Q. A copper-based polycarbonyl coordination polymer as a cathode for Li ion batteries[J]. Cryst. Growth Des., 2021,21:3668-3676. doi: 10.1021/acs.cgd.0c01578
GE C H, ZHANG X D, ZHANG H D, ZHAO Y, LI X Q, ZHANG R. Color variety of organic salt of N, N'-bis(glycinyl)-pyromellitic diimide and Ncontaining base[J]. Mol. Cryst. Liq. Cryst., 2011,534:114-123. doi: 10.1080/15421406.2010.526532
SHELDRICK G M. SHELXS-97, Program for the solution of crystal structures[CP]. University of Gottingen, Germany, 1997.
SONG Z P, QIAN Y M, GORDIN M L, TANG D H, XU T, OTANI M, ZHAN H, ZHOU H S, WANG D H. Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage[J]. Angew. Chem. -Int. Edit., 2015,54:13947-13951. doi: 10.1002/anie.201506673
CHEN X J, SU H Q, YANG B Z, LIU X C, SONG X T, SU L X, YIN G, LIU Q. Constructing high-capacity and flexible aqueous zinc-ion batteries with air-recharging capability using organic cathodes[J]. Chin. Chem. Lett., 2024,35108487. doi: 10.1016/j.cclet.2023.108487
LIU K K, GUAN Z J, KE M T, FANG Y. Bridging the gap between charge storage site and transportation pathway in molecular-cage-based flexible electrodes[J]. ACS Cent. Sci., 2023,9:805-815. doi: 10.1021/acscentsci.3c00027
WANG J, POLLEUX J, LIM J, DUNN B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. J. Phys. Chem. C, 2007,111:14925-14931. doi: 10.1021/jp074464w
RONG H R, LIU Z W, GAO G X, SU L X, CHEN X J, HUANG H, LIU W L, LIU Q. Realizing higher-performance supercapacitor using 3D cadmium-based coordination polymer[J]. J. Alloy. Compd., 2025,1010177894.
Xiaxia LIU , Xiaofang MA , Luxia GUO , Xianda HAN , Sisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
Xiumei LI , Linlin LI , Bo LIU , Yaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273
Xiaoling WANG , Hongwu ZHANG , Daofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214
Peipei CUI , Xin LI , Yilin CHEN , Zhilin CHENG , Feiyan GAO , Xu GUO , Wenning YAN , Yuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
Gaofeng WANG , Shuwen SUN , Yanfei ZHAO , Lixin MENG , Bohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479
Long TANG , Yaxin BIAN , Luyuan CHEN , Xiangyang HOU , Xiao WANG , Jijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180
Shuwen SUN , Gaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Lulu DONG , Jie LIU , Hua YANG , Yupei FU , Hongli LIU , Xiaoli CHEN , Huali CUI , Lin LIU , Jijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
Yukun CHEN , Kexin FENG , Bolun ZHANG , Wentao SONG , Jianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Yan XU , Suzhi LI , Yan LI , Lushun FENG , Wentao SUN , Xinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Huan ZHANG , Jijiang WANG , Guang FAN , Long TANG , Erlin YUE , Chao BAI , Xiao WANG , Yuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291
In a: H atoms are omitted for clarity; Symmetry code: #1:-x+1, -y+1, -z.
The current densities in a were 1, 2, 3, 4, 6, 8, 10, and 20 A·g-1; Inset: corresponding enlarged plots.
The scan rates in a were 2, 5, 10, 20, 40, 60, 80, and 100 mV·s-1.