Citation: Jin ZHANG, Yuting WANG, Bin YU, Yuxin ZHONG, Yufeng ZHANG. Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028 shu

Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B

  • Corresponding author: Jin ZHANG, jzmary@163.com
  • Received Date: 24 January 2025
    Revised Date: 9 May 2025

Figures(10)

  • A flower-like BiOBr photocatalyst (CS/BiOBr) was prepared by using the carbon material derived from corn straw (CS) as the carrier. The prepared composites were characterized by X - ray diffraction (XRD), Fourier transform infrared (FIIR) spectra, scanning electron microscope (SEM), X - ray photoelectron spectra (XPS), and UV-Vis diffuse reflectance spectra (UV-Vis DRS). The SEM analyses indicate that the introduction of CS promotes the formation of a unique flower-like structure in BiOBr, which not only optimizes the efficiency of light capture but also increases the specific surface area of BiOBr. The bandgap of the composite was narrower compared with the pure BiOBr. The CS/BiOBr composites exhibited higher photocatalytic activity than pure CS and BiOBr under visible light irradiation, and a higher first-order reaction rate constant (k) of 0.043 7 min-1 than BiOBr (0.014 6 min-1), and exhibited excellent stability and reusability during the cyclic run. The enhanced photocatalytic activity is attributed to the efficient separation of photoinduced electrons and holes. Superoxide radicals and holes were the major active species.
  • 加载中
    1. [1]

      LIANG F J, CUI J L, NING C N, PENG X L, ZHANG F, LIANG Y, GAO J L. Construction of biomass-derived magnetic-recyclable FeNi-LDO@CS to activate persulfate for simultaneous degradation of cationic and anionic dyes: Discrepancy, mechanism and toxicity analysis[J]. J. Environ. Sci., 2025,154:741-759. doi: 10.1016/j.jes.2024.09.028

    2. [2]

      FIORENTINI E F, PETRICIOLET A B, ESCUDERO L B. Graphene oxide functionalized with L - asparagine applied to crystal violet dye removal from water and wastewater[J]. Environ. Sci. Pollut. Res., 2024,32(1):1-13. doi: 10.1007/s11356-024-35698-1

    3. [3]

      CONG Y, WANG Y H, LI W P, ZHANG Z C, LIU S, GUO H Y, YUAN H Y, ZHOU Z P. Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction[J]. Chinese J. Inorg. Chem., 2025,40(11):2241-2249.

    4. [4]

      LIU Y Q, CHEN J S, DUAN D R, ZHANG Z Y, LIU C, CAI W, ZHAO Z W. Environmental impacts and biological technologies toward sustainable treatment of textile dyeing wastewater: A review[J]. Sustainability, 2024,16(24)10867. doi: 10.3390/su162410867

    5. [5]

      RATTANAWONGWIBOON T, KHONGBUNYA N, NAMVIJIT K, LERTSARAWUT P, LAKSEE S, HEMVICHIAN K, MADRID J F, UMMARTYOTIN S. Eco - friendly dye adsorbent from poly(vinyl amine) grafted onto bacterial cellulose sheet by using gamma radiation-induced simultaneous grafting and base hydrolysis[J]. J. Polym. Environ., 2023,32(7):3048-3060.

    6. [6]

      CHEN L, CUI H W, KONG LY, LONG J Y, FEI B L. Efficient removal of cationic dyes by a bivanadyl capped, highly reduced Keggin polyoxometalate through flocculation[J]. Colloid Surf. A? Physicochem. Eng. Asp., 2024,703135399. doi: 10.1016/j.colsurfa.2024.135399

    7. [7]

      SUN J X, YUAN M Z, ZHOU H B, CHEN Z, WANG Y G, CHENG H N. Enhanced printing and dyeing wastewater treatment using anaerobic-aerobic systems with bioaugmentation[J]. J. Hazard. Mater., 2025,486136982. doi: 10.1016/j.jhazmat.2024.136982

    8. [8]

      ETANA R, ANGASSA K, GETU T. Dye removal from textile wastewater using scoria-based of vertical subsurface flow constructed wetland system[J]. Sci. Rep., 2025,15(1)949. doi: 10.1038/s41598-024-79174-9

    9. [9]

      LUCAS G, CAROLINA S G, BISINELLA S F, MARQUES P S, CURVELO P N. Membrane process and adsorption on pine nut shell for removal of dye from synthetic wastewater[J]. Environ. Technol., 2023,44(1):11-17.

    10. [10]

      TAN H B, ZHANG Y B, LI B W, YANG H, HOU H T, HUANG Q L. Preparation of TiO2-coated glass flat membrane and its photocatalytic degradation of methylene blue[J]. Ceram. Int., 2023,49(11):17236-17244. doi: 10.1016/j.ceramint.2023.02.089

    11. [11]

      SUDARSAN S, ANANDKUMAR M, TROFIMOV E A. Synthesis and characterization of copper ferrite nanocomposite from discarded printed circuit boards as an effective photocatalyst for Congo red dye degradation[J]. J. Ind. Eng. Chem., 2024,131:208-220. doi: 10.1016/j.jiec.2023.10.020

    12. [12]

      FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238:37-38. doi: 10.1038/238037a0

    13. [13]

      DING C M, ZHU Q R, YANG B, PETROPOULOS E, XUE L H, FENG Y F. Efficient photocatalysis of tetracycline hydrochloride (TC -HCl) from pharmaceutical wastewater using AgCl/ZnO/g-C3N4 composite under visible light[J]. J. Environ. Sci., 2023,126:249-262. doi: 10.1016/j.jes.2022.02.032

    14. [14]

      WANG M, GUO B Y, ZHAN J Y, ZHUANG Y, KOMARNENI S, MA J F. Mo doping of BiOBr nanoflowers for the degradation of tetracycline by heterogeneous activation of persulfate under visible light[J]. Chem. Phys. Lett., 2022,807140093. doi: 10.1016/j.cplett.2022.140093

    15. [15]

      ZHU Q L, HUANG W X, SHEN J H, JIANG H B, ZHU Y H, LI C Z. In-situ preparation of BiOBr/Bi-doped CsPbBr3 S-scheme heterojunction for efficient photocatalytic CO2 reduction[J]. Chem. Eng. J., 2024,499156663. doi: 10.1016/j.cej.2024.156663

    16. [16]

      MALATHI A, RAVINDRANADH K, KAMALAKANNAN S, SUPAREAK P, PIYASAN P. Noble metals (Pd, Ag, Pt, and Au) doped bismuth oxybromide photocatalysts for improved visible light-driven catalytic activity for the degradation of phenol[J]. Chemosphere, 2023,324138368. doi: 10.1016/j.chemosphere.2023.138368

    17. [17]

      HAN T, CAO X, CHEN H C, MA J G, YU Y, LI Y H, XU W, LI Y D. Photosynthesis of benzonitriles on BiOBr nanosheets promoted by vacancy associates[J]. Angew. Chem.? Int. Edit., 2023,135(49)e202313325.  

    18. [18]

      WANG M J, OSELLA S, BRESCIA R, LIU Z M, GALLEGO J, CATTELAN M, TERESA G. 2D MoS2/BiOBr van der Waals hetero-junctions by liquid - phase exfoliation as hotoelectrocatalysts for hydrogen evolution[J]. Nanoscale, 2022,15:1-11.

    19. [19]

      GUO P, XU L, YU T L, ZHAO P C, XU J, SHEN B X. Transition metal in-situ doped BiOBr: Introducing oxygen vacancies to enhance hydroxyl radical generation for improved photocatalytic degradation of toluene[J]. Sep. Purif. Technol., 2025,354129247. doi: 10.1016/j.seppur.2024.129247

    20. [20]

      LETICIA M S, FRANCISCO A B, MARISA C O, RENAN A R. The-oretical and experimental investigation on electronic and photocatalytic properties of n-p BiOBr/FeWO4 heterojunction for dyes degradation[J]. J. Alloy. Compd., 2025,1010177323. doi: 10.1016/j.jallcom.2024.177323

    21. [21]

      HAN Z Y, LIU Y G, ZHANG R X, SHI J L, JIA Y B, LIU X C, JIANG H Y. One-pot synthesis of C@BiOBr for efficient photocatalytic degradation of phenol[J]. Langmuir, 2024,40(30):15847-15856.  

    22. [22]

      ZHONG Y, ZHANG X Y, WANG Y M, ZHANG X T, WANG X M. Carbon quantum dots from tea enhance Z-type BiOBr/C3N4 hetero-junctions for RhB degradation: Catalytic effect, mechanisms, and intermediates[J]. Appl. Surf. Sci., 2023,639158254. doi: 10.1016/j.apsusc.2023.158254

    23. [23]

      WANG L X, SUN J, SHI J W, HUANG T, LIU K, TONG Z F, WANG H B. Reinforced built-in electric field and mediated Schottky barrier height via carbon quantum dots electronic bridges on BiOBr/Ti3C2 for efficient photocatalytic quinolone antibiotics degradation[J]. Chem. Eng. J., 2024,500157168. doi: 10.1016/j.cej.2024.157168

    24. [24]

      FANG Y R, HOSSAIN M S, PENG S, HAN L, YANG P. Sustainable energy development of crop straw in five southern provinces of China: Bioenergy production, land, and water saving potential[J]. Renew. Energy, 2024,224120134. doi: 10.1016/j.renene.2024.120134

    25. [25]

      FENG Z Y, LI J, CHEN N, FENG C P. Sulfonated corn stalk enhanced hydrogel adsorption for heavy metal from metal mine gallery effluent[J]. Sep. Purif. Technol., 2025,357130160. doi: 10.1016/j.seppur.2024.130160

    26. [26]

      DING S, ZENG X, WANG B, YAN Y L. Synthesis of corn straw based carbon doped Nb2O5 as photocatalysts for rhodamine B degradation under visible light illumination[J]. Inorg. Chem. Commun., 2024113231.  

    27. [27]

      YANG P H, LUO S, LIU Q H, MA S W, ZHONG J B. Rape straw biochar-assisted preparation of flower-like BiOCl with enriched oxygen vacancies for efficient photocatalytic CO2 reduction and pollutants degradation[J]. J. Phys. Chem. Solids, 2025,196112400. doi: 10.1016/j.jpcs.2024.112400

    28. [28]

      DI J, XIA M X, WANG B, LI X W, ZHANG Q, CHEN Z G, LI H M. Nitrogen doped carbon quantum dots/BiOBr ultrathin nanosheets: In situ strong coupling and improved molecular oxygen activation ability under visible light irradiation[J]. ACS Sustain. Chem. Eng., 2016,4(1):136-146. doi: 10.1021/acssuschemeng.5b00862

    29. [29]

      WANG H T, FAN X R, YAN M M, GUO T X, LI X F, CHEN C, QI Y. BiOBr nanosheets coupling with biomass carbon derived from locust leaves for enhanced photocatalytic degradation of RhB[J]. Chin. J. Chem. Eng., 2024,74:31-43. doi: 10.1016/j.cjche.2024.07.004

    30. [30]

      YAN T, YAN Q, WANG X D, LIU H Y, LI M M, LU S X. Facile fabrication of heterostructured g-C3N4/Bi2MoO6 microspheres with highly efficient activity under visible light irradiation[J]. Dalton Trans., 2015,44:1601-1611. doi: 10.1039/C4DT02127D

    31. [31]

      ZHANG K, SUN P, FAYE M S, ZHANG Y. Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation[J]. Carbon, 2018,130:730-740. doi: 10.1016/j.carbon.2018.01.036

    32. [32]

      GE Q, LI P, LIU M, XIAO G M, XIAO Z Q, MAO J W, GAI X K. Removal of methylene blue by porous biochar obtained by KOH acti- vation from bamboo biochar[J]. Bioresour. Bioprocess., 2023,10:51-63. doi: 10.1186/s40643-023-00671-2

    33. [33]

      CHEN Q, YAO Y, ZHENG S. Fabrication of oxygen-vacancy-adjust- able Yb3+/Er3+ co-doped BiOBr 3D flowerlike hierarchical architec- tures with enhanced photocatalytic activity under broad spectrum (UV/vis/NIR) excitation[J]. J. Mol. Struct., 2024,1310138296. doi: 10.1016/j.molstruc.2024.138296

    34. [34]

      YABALAK E, OZDEMIR S, ALNUAIMY M M. From cornfield to catalyst support: Eco - friendly synthesis of Cu/CuO nanoparticles, immobilization on the waste corn husk fibers, photocatalytic exploration and bioactivity evaluation[J]. Chemosphere, 2024,365143328. doi: 10.1016/j.chemosphere.2024.143328

    35. [35]

      CHEN X, WU Y, TANG Y. Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole[J]. Chin. Chem. Lett., 2024,35109245. doi: 10.1016/j.cclet.2023.109245

    36. [36]

      TIAN C, LUO S, SHE J, QING Y, YAN N, WU Y, LIU Z. Cellulose nanofibrils enable flower-like BiOCl for high-performance photoca- talysis under visible-light irradiation[J]. Appl. Surf. Sci., 2019,464:606-615. doi: 10.1016/j.apsusc.2018.09.126

    37. [37]

      LI S, WANG Z W, ZHAO X T, YANG X. Insight into enhanced car- bamazepine photodegradation over biochar-based magnetic photocatalyst Fe3O4/BiOBr/BC under visible LED light irradiation[J]. Chem. Eng. J., 2019,360:600-611. doi: 10.1016/j.cej.2018.12.002

    38. [38]

      GAO Y, ZHANG Z, LI S, LIU J, YAO L, LI Y, ZHANG H. Insights into the mechanism of heterogeneous activation of persulfate with a clay/iron-based catalyst under visible LED light irradiation[J]. Appl. Catal. B?Environ., 2016,185:22-30. doi: 10.1016/j.apcatb.2015.12.002

    39. [39]

      LIU C, REN Y, WANG Z, SHI Y, GUO B, YU Y, WU L. Flowerlike BiOCl nanospheres fabricated by an in situ self - assembly strategy for efficiently enhancing photocatalysis[J]. J. Colloid Interface Sci., 2022,607:423-430. doi: 10.1016/j.jcis.2021.09.002

    40. [40]

      CAGLAR B, GUNER E K, ODOKUR K V, OZDEMIR A O, ICER F, CAGLAR S, DOGAN B, BESER B M, TABAK A, ERSOY S. Application of BiFeO3 and Au/BiFeO3 decorated kaolinite nanocomposites as efficient photocatalyst for degradation of dye and electrocatalyst for oxygen reduction reaction[J]. J. Photochem. Photobiol. A?Chem., 2021,418113400. doi: 10.1016/j.jphotochem.2021.113400

    41. [41]

      LI B S, LAI C, XU P, ZENG G, HUANG D, QIN L, YI H, CHENG M, WANG L, HUANG F, LIU S, ZHANG M. Facile synthesis of bismuth oxyhalogen-based Z-scheme photocatalyst for visible-lightdriven pollutant removal: Kinetics, degradation pathways and mechanism[J]. J. Clean. Prod., 2019,225:898-912. doi: 10.1016/j.jclepro.2019.04.012

    42. [42]

      LI H P, LIU J Y, HOU W G, DU N, ZHANG R J, TAO X T. Synthesis and characterization of g - C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity[J]. Appl. Catal. B-Environ., 2014,160:89-97.  

    43. [43]

      LI B S, LAI C, QIN L. Anchoring single-unit- cell defect-rich bismuth molybdate layers on ultrathin carbon nitride nanosheet with boosted charge transfer for efficient photocatalytic ciprofloxacin degradation[J]. J. Colloid Interface Sci., 2020,560:701-713. doi: 10.1016/j.jcis.2019.10.116

    44. [44]

      WANG D S, WANG Y H, LI X Y, LUO Q Z, AN J, YUE H X. Sunlight photocatalytic activity of polypyrrole-TiO2 nanocomposites prepared by'in situ'method[J]. Catal. Commun., 2008,9:1162-1166. doi: 10.1016/j.catcom.2007.10.027

    45. [45]

      ZHAO Y X, HU H, ZHOU X, YANG S J, YANG Y. Preparation and photocatalytic degradation performance of MOF-808/BiOCl composites[J]. Chinese J. Inorg. Chem., 2023,39(8):1553-1563.

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    3. [3]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    4. [4]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    5. [5]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    6. [6]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    7. [7]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    8. [8]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    9. [9]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    10. [10]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    11. [11]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    12. [12]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    13. [13]

      Miao-Miao ChenMin-Ling ZhangXiao SongJun JiangXiaoqian TangQi ZhangXiuhua ZhangPeiwu Li . Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples. Chinese Chemical Letters, 2025, 36(1): 109785-. doi: 10.1016/j.cclet.2024.109785

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    17. [17]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    18. [18]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    19. [19]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    20. [20]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

Metrics
  • PDF Downloads(0)
  • Abstract views(14)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return