Citation: Wanting CHEN, Chufei MIAO, Yan LIU, Bobi ZHENG, Xiaoyu ZHENG, Han XU, Jumei TIAN. Syntheses, characterization, and luminescence properties of Yb(Ⅲ)-based one-dimensional chain coordination polymer[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(8): 1672-1680. doi: 10.11862/CJIC.20250013 shu

Syntheses, characterization, and luminescence properties of Yb(Ⅲ)-based one-dimensional chain coordination polymer

  • Corresponding author: Jumei TIAN, 201400010312@xmmc.edu.cn
  • #共同第一作者。
  • Received Date: 11 January 2025
    Revised Date: 24 May 2025

Figures(3)

  • One Yb(Ⅲ)-based coordination polymer, {[Yb(H2dhtp)1.5(H2O)4]·3H2O}n (1) (H4dhtp=2, 5-dihydroxyterephthalic acid), was fabricated and structurally characterized by single-crystal X-ray diffraction, IR, powder X-ray diffraction, X-ray diffraction, and elemental analysis. Complex 1 displays a 1D chain structure, and belongs to P1 group. The solid-state luminescent spectrum of 1 showed an emission band with the maximum at 508 nm (λex=408 nm). It exhibited the emission characteristic of the H4dhtp ligand. The fluorescence of 1 in water displayed the strongest intensity. In detecting various metal ions, adding Zr4+ led to a blue shift in fluorescence, accompanied by an increase in intensity, whereas the presence of Fe3+ resulted in a decrease in luminescence. The changes observed in the IR spectrum indicate an interaction between Fe3+/Zr4+ and complex 1, resulting in the variation of luminescence properties.
  • 加载中
    1. [1]

      WANG W M, WU Z L, CUI J Z. Molecular assemblies from linear-shaped Ln4 clusters to Ln8 clusters using different β-diketonates: Disparate magnetocaloric effects and single-molecule magnet behaviours[J]. Dalton Trans., 2021,50(37):12931-12943.

    2. [2]

      WANG W M, QIAO N, XIN X Y, WU Z L, CUI J Z. Octanuclear Ln(Ⅲ)-based clusters assembled by a polydentate Schiff base ligand and a β-diketone co-ligand: Efficient conversion of CO2 to cyclic carbonates and large magnetocaloric effect[J]. Cryst. Growth Des., 2023,23(1):87-95.

    3. [3]

      HAN L J, WU X X, MA Z G, LI Y, WEI Q H. Novel luminescent homo/heterometallic platinum(Ⅱ) alkynyl complexes based on Y-shaped pyridyl diphosphines[J]. Dalton Trans., 2020,49(24):8347-8353.

    4. [4]

      ZHAO D, XUE Y L, ZHANG R J, FAN Y P, LIU B Z, LI Y A, ZHANG S R. Design, synthesis, crystal structure and luminescent properties introduced by Eu3+ of a new type of rare-earth borophosphate CsNa2REE2(BO3)(PO4)2 (REE=Y, Gd)[J]. Dalton Trans., 2020,49(29):10104-10113.

    5. [5]

      SHI X H, XIN X Y, CHEN F J, LI W Y, WEI S J, LIU J C, HAN H, WU W H Y, WANG J N, WANG J Y, WANG J, SHI Y. Crystal structure, fluorescence properties, and biological activity of three butterfly-shaped Ln4 compounds[J]. Polyhedron, 2023,234116321.

    6. [6]

      XU Y Y, CHEN P, GAO T, LI H F, YAN P F. White-light emission based on a single component Sm(Ⅲ) complex and enhanced optical properties by doping methods[J]. CrystEngComm, 2019,21(6):964-970.

    7. [7]

      MA Y A, YANG X P, SHI D L, NIU M Y, SCHIPPER D. One high-nuclearity Cd(Ⅱ)-Yb(Ⅲ) nanoring with near-IR luminescent sensing to antibiotics[J]. Inorg. Chem., 2020,59(23):16809-16813.

    8. [8]

      OTHONG J, BOONMAK J, CHEANSIRISOMBOON A, PUANGMALI T, PHANCHAI W, YOUNGME S. pH modulated luminescent switching and discriminative detection of amino acid based on metal-organic framework[J]. Anal. Chim. Acta, 2021,1187339157.

    9. [9]

      ALTHOMALI R H, HAMOUD ALSHAHRANI S, QASIM ALMAJIDI Y, KAMAL HASAN W, GULNOZA D, ROMERO-PARRA R M, ABID M K, RADIE ALAWADI A H, ALSALAMYH A, JUYAL A. Current trends in nanomaterials-based electrochemiluminescence aptasensors for the determination of antibiotic residues in foodstuffs: A comprehensive review[J]. Crit. Rev. Anal. Chem., 2023:1-17.

    10. [10]

      SHI D L, YANG X P, XIAO Z Y, LIU X M, CHEN H F, MA Y N, SCHIPPER D, JONES R A. A 42-metal Yb(Ⅲ) nanowheel with NIR luminescent response to anions[J]. Nanoscale, 2020,12(3):1384-1388.

    11. [11]

      ZUO C Y, LI Q Q, DAI M Z, FAN C Y, XU Y, LIU G Z, WANG S Y. A cadmium-based metal-organic framework for fluorescence detection of acetone and Fe3+[J]. Chinese J. Inorg. Chem., 2023,39(12):2301-2310.

    12. [12]

      QUAREZ É, JOUHARA A, GROLLEAU S, DOLHEM F, DUPR N, POIZOT P. From partial to complete neutralization of 2, 5-dihydroxyterephthalic acid in the Li-Na system: Crystal chemistry and electrochemical behavior of Na2Li2C8H2O6 vs. Li[J]. CrystEngComm, 2020,22(9):1653-1663.

    13. [13]

      BELLIS J D, BELLUCCI L, BOTTARO G, LABELLA L, MARCHETTI F, SAMARITANI S, BELLI DELL'AMICO D, ARMELAO L. Single-crystal-to-single-crystal post-synthetic modifications of three-dimensional LOFs (Ln=Gd, Eu): A way to modulate their luminescence and thermometric properties[J]. Dalton Trans., 2020,49(18):6030-6042.

    14. [14]

      VOGEL D J, SAVA GALLIS D F, NENOFF T M, RIMSZA J M. Structure and electronic properties of rare earth DOBDC metal-organic-frameworks[J]. Phys. Chem. Chem. Phys., 2019,21(41):23085-23093.

    15. [15]

      HENKELIS S E, RADEMACHER D, VOGEL D J, VALDEZ N R, RODRIGUEZ M A, ROHWER L E S, NENOFF T M. Luminescent properties of DOBDC containing MOFs: The role of free hydroxyls[J]. ACS Appl. Mater. Interfaces, 2020,12(20):22845-22852.

    16. [16]

      HU F, YANG X P, LENG X L, WANG C R, YANG K Q, ZHANG L J, SCHIPPER D. Construction of a near-IR-luminescent rectangular Yb(Ⅲ) complex from a dodecadentate Schiff base ligand for the excitation-wavelength-dependent detection of aloe emodin (a natural medicinal ingredient)[J]. Inorg. Chem., 2023,62(6):2508-2512.

    17. [17]

      TOLEDO-JALDIN H P, PINZON-VANEGAS C, BLANCO-FLORES A, ZAMORA-MORENO J, ROSALES-V ZQUEZ L D, VILCHIS-NESTOR A R, REYES-DOM NGUEZ I A, ROMERO-SOLANO M Á, DORAZCO-GONZ LEZ A. Pesticides luminescent sensing by a Tb3+-doped Zn metal-organic framework with selectivity towards parathion[J]. Environ. Pollut., 2024,343123195.

    18. [18]

      ZHENG B B, MIAO C F, XU H, LAI J Q, LI M, TIAN J M. Gd(Ⅲ)/ Dy(Ⅲ)-based coordination polymers for luminescent and magnetic properties[J]. Results Chem., 2024,7101276.

    19. [19]

      PINSKY M, AVNIR D. Continuous symmetry measures. 5. The classical polyhedra[J]. Inorg. Chem., 1998,37(21):5575-5582.

    20. [20]

      ROY S, DU J Y, MANOHAR E M, AZIZ T, PAL T K, SUN L, AHMED N, DAS S. Syntheses, structures, and magnetic properties of novel[3×1+2×1] pentanuclear zinc(Ⅱ)-lanthanide(Ⅲ) cocrystal complexes: Slow magnetic relaxation behavior of the Dy(Ⅲ) analogue[J]. Cryst. Growth Des., 2023,23(4):2218-2230.

    21. [21]

      BRESE N E, KEEFFE M O. Bond-valence parameters for solids[J]. Acta Crystallogr. Sect. B, 1991,47:192-197.

    22. [22]

      GAMONCHUANG J, SANTALADCHAIYAKIT Y, BURAKHAM R. Magnetic solid-phase extraction of carbamate pesticides using magnetic metal-organic frameworks derived from benzoate ligands, followed by digital image colorimetric screening and high-performance liquid chromatography analysis[J]. ACS Omega, 2022,7(14):12202-12211.

    23. [23]

      OTHONG J, BOONMAK J, KIELAR F, YOUNGME S. Dual function based on switchable colorimetric luminescence for water and temperature sensing in two-dimensional metal-organic framework nanosheets[J]. ACS Appl. Mater. Interfaces, 2020,12(37):41776-41784.

    24. [24]

      WU H N, GAO L L, ZHANG J, ZHAI L J, GAO T, NIU X Y, HU T P. Syntheses, characterization, and slow magnetic relaxation or luminescence properties of three new 2D coordination polymers[J]. J. Mol. Struct., 2020,1219128613.

    25. [25]

      WANG H, LI X, CHENG H, LI Y J, SONG X Q, WANG L. Two luminescent film sensors constructed from new lanthanide coordination polymers for ratiometric detection of Zn2+ and NH3 in water and their white emission properties[J]. Polym. Chem., 2022,13(6):778-793.

    26. [26]

      LIN Z G, SONG F Q, WANG H, SONG X Q, YU X X, LIU W S. The construction of a novel luminescent lanthanide framework for the selective sensing of Cu2+ and 4-nitrophenol in water[J]. Dalton Trans., 2021,50(5):1874-1886.

    27. [27]

      WANG H. Preparation and sensing performance study of multi-branch luminescent compounds and their lanthanide coordination polymers[D]. Lanzhou: Lanzhou Jiaotong University, 2022: 1-87

    28. [28]

      HASEGAWA M, OHMAGARI H, TANAKA H, MACHIDA K. Luminescence of lanthanide complexes: From fundamental to prospective approaches related to water- and molecular-stimuli[J]. J. Photochem. Photobiol. C‒Photochem. Rev., 2022,50100484.

    29. [29]

      BINNEMANS K. Lanthanide-based luminescent hybrid materials[J]. Chem. Rev., 2009,109(9):4283-4374.

    30. [30]

      CHEN Q. Research on the synthesis and detection Application of multidentate functional ligand complexes[D]. Wuxi: Jiangnan University, 2023: 1-90

    31. [31]

      LEI K W, LIU W S, TAN M Y. Solvent effect on the luminescent properties of new europium and terbium nitrate complexes with 3, 3, 7, 7-tetra[N-methyl-N-phenyl(acetamide)-2-oxymethyl]-5-oxanonane[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2007,66(3):590-593.

    32. [32]

      BÜNZLI J C G. Lanthanide luminescence: From a mystery to rationalization, understanding, and applications[M]//Bünzli J C G, Pecharsky V K. Handbook on the Physics and Chemistry of Rare Earths: Vol. 50. Amsterdam, Oxford: Elsevier, 2016: 141-176

    33. [33]

      RODRIGUEZ-CACERES M I, AGBARIA R A, LUNA U J, WHITE S, WARNER I M. Fluorescence of zirconium-naphthalene complexes: Effect of ortho-naphthalene substitution[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2008,71(3):907-914.

  • 加载中
    1. [1]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    2. [2]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    3. [3]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    4. [4]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    5. [5]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    6. [6]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    7. [7]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    8. [8]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Youbo HUDonggang LIChanghua SUNZhenzhong LUSongjun GU . Coordination polymers based on anthracene- and pyrene-derived ligands: Crystal structure, fluorescent property, and framework isomerization. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1681-1688. doi: 10.11862/CJIC.20250004

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    13. [13]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    14. [14]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    15. [15]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    16. [16]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    17. [17]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    18. [18]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    19. [19]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    20. [20]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

Metrics
  • PDF Downloads(0)
  • Abstract views(3)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return