Citation: Hongjie SHEN, Haozhe MIAO, Yuhe YANG, Yinghua LI, Deguang HUANG, Xiaofeng ZHANG. Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009 shu

Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand

Figures(8)

  • Two novel pyridyl ligands, 4-[4-(9, 9-dimethyl-9H-fluoren-2-yl)phenyl]pyridine (dmfpp) and 9-[4-(pyridin-4-yl)phenyl]-9H-carbazole (ppcbz), were successfully synthesized and structurally characterized by 1H NMR and 13C NMR. Two dinuclear Cu(Ⅰ) complexes, [Cu2(dmfpp)2(PPh3)2I2]·2CH2Cl2 (1) and [Cu2(ppcbz)2(PPh3)2I2] (2), have been synthesized by reacting two pyridyl ligands with [Cu4I4(PPh3)4], in a stoichiometric ratio. The complexes have been characterized by elemental analysis, fluorescence spectrum, thermogravimetric analysis (TGA), and single-crystal and powder X-ray diffraction. Complex 1 crystallizes in monoclinic system, space group P21/c with a=1.853 43(3) nm, b=1.266 34(2) nm, c=1.833 48(3) nm, β=106.319 3(18)°, V=4.082 24(12) nm3. Complex 2 crystallizes in mono-clinic system, space group $P \overline{1}$ with a=0.941 07(4) nm, b=1.128 86(4) nm, c=1.697 77(6) nm, α=87.775(3)°, β=79.622(3)°, γ=71.418(3)°, V=1.681 26(11) nm3. Both complexes feature a [Cu2I2] core with tetrahedrally coordinated Cu(Ⅰ) centers. TGA results demonstrated their good thermal stability, with structural decomposition initiating above 220 ℃. Fluorescence studies under 370 nm excitation revealed green emission for both complexes. Complex 2 exhibited an outstanding photoluminescence quantum yield (PLQY) of 0.79, significantly higher than that of complex 1 (PLQY: 0.02).
  • 加载中
    1. [1]

      ZHOU Y B, HUA J, DING D, TANG Y H. Interrogating amyloid aggregation with aggregation-induced emission fluorescence probes[J]. Biomaterials, 2022,286121605. doi: 10.1016/j.biomaterials.2022.121605

    2. [2]

      TROYANO J, ZAMORA F, DELGADO S. Copper(Ⅰ)-iodide cluster structures as functional and processable platform materials[J]. Chem. Soc. Rev., 2021,50:4606-4628. doi: 10.1039/D0CS01470B

    3. [3]

      TSAI H, HUANG H H, WATT J, HOU C H, STRZALKA J, SHYUE J J, WANG L, NIE W. Cesium lead halide perovskite nanocrystals assembled in metalorganic frameworks for stable blue light emitting diodes[J]. Adv. Sci., 2022,9(14)2105850. doi: 10.1002/advs.202105850

    4. [4]

      DUELL B A, LI J, SUBRAMANIAN M A. Hibonite blue: A new class of intense inorganic bluecolorants[J]. ACS Omega, 2019,4(26):22114-22118. doi: 10.1021/acsomega.9b03255

    5. [5]

      LANGDON-JONES E E, POPE S J A. Recent developments in gold(Ⅰ) coordination chemistry: Luminescence properties and bioimaging opportunities[J]. Chem. Commun., 2014,50:10343-10354. doi: 10.1039/C4CC03259D

    6. [6]

      MA D L, HE H Z, LEUNG K H, CHAN D S H, LEUNG C H. Bioac-tive luminescent transition-metal complexes for biomedical applica-tions[J]. Angew. Chem.-Int. Edit., 2013,52(30):7666-7682. doi: 10.1002/anie.201208414

    7. [7]

      LIANG X, ZHANG L, SHI B, CHANG H, QIAO D, SHEN T L, ZHAO W, YIN Z, SHANG L Q. Design and application of near-infra-red fluorophore based on a novel thiazolidinedione-functionalized dicyanoisophorone[J]. Talanta, 2020,220121433. doi: 10.1016/j.talanta.2020.121433

    8. [8]

      TRAVEN V F, CHEPTSOV D A. Sensory effects of fluorescent organic dyes[J]. Russ. Chem. Rev., 2020,89(7):713-749. doi: 10.1070/RCR4909

    9. [9]

      ASHOKA A H, APARIN I O, REISCHA A, KLYMCHENKO A S. Brightness of fluorescent organic nanomaterials[J]. Chem. Soc. Rev., 2023,52:4525-4548. doi: 10.1039/D2CS00464J

    10. [10]

      TAO P, MIAO Y, WANG H, XU B, ZHAO Q. High-performance organic electroluminescence: Design from organic light-emitting materials to devices[J]. Chem. Rec., 2018,18:1-32. doi: 10.1002/tcr.201880101

    11. [11]

      SONG J Z, LI J H, LI X M, XU L M, DONG Y H, ZENG H B. Quan-tum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Adv. Mater., 2015,27(44):7162-7167. doi: 10.1002/adma.201502567

    12. [12]

      JANG E, JANG H. Review: Quantum dot light-emitting diodes[J]. Chem. Rev., 2023,123(8):4663-4692. doi: 10.1021/acs.chemrev.2c00695

    13. [13]

      ERROI A, MECCA S, FRANK I. Ultrafast and radiation-hard lead halide perovskite nanocomposite scintillators[J]. ACS Energy Lett., 2023,8(9):3883-3894. doi: 10.1021/acsenergylett.3c01396

    14. [14]

      HEI X, LI J. All-in-one: A new approach toward robust and solution-processable copper halide hybrid semiconductors by integrating covalent, coordinate and ionic bonds in their structures[J]. Chem. Sci., 2021,12(11):3805-3817. doi: 10.1039/D0SC06629J

    15. [15]

      XIE M C, HAN C M, LIANG Q Q, ZHANG J, XIE G H, XU H. Highly efficient sky blue electroluminescence from ligand-activated copper iodide clusters: Overcoming the limitations of cluster light-emitting diodes[J]. Sci. Adv., 2019,5(6).

    16. [16]

      YIN S Y, WANG Z, LIU Z M, YU H J, ZHANG J H, WANG Y, MAO R H, PAN M, SU C Y. Multiresponsive UV-one-photon absorp-tion, near-infrared-two-photon absorption, and X/γ-photoelectric absorption luminescence in one[J]. Inorg. Chem., 2019,58(16):10736-10742. doi: 10.1021/acs.inorgchem.9b00876

    17. [17]

      KOBAYASHI A, YOSHIDA Y, YOSHIDA M, KATO M. Mechano-chromic switching between delayed fluorescence and phosphores-cence of luminescent coordination polymers composed of dinuclear copper(Ⅰ) iodide rhombic cores[J]. Chem.-Eur. J., 2018,24(55):14750-14759. doi: 10.1002/chem.201802532

    18. [18]

      WANG Z G, CHEN B K, SUSHA A S, WANG W H, RECKMEIER C J, CHEN R, ZHONG H Z, ROGACH A L. All-copper nanocluster based down-conversion white light-emitting devices[J]. Adv. Sci., 2016,3(11)1600182. doi: 10.1002/advs.201600182

    19. [19]

      AU V K M. Organic light-emitting diodes based on luminescent self-assembled materials of copper(Ⅰ)[J]. Energy Fuels, 2021,35(23):18982-18999. doi: 10.1021/acs.energyfuels.1c01956

    20. [20]

      TSUGE K, CHISHINA Y, HASHIGUCHI H, SASAKI Y, KATO M, ISHIZAKA S, KITAMURA N. Luminescent copper(Ⅰ) complexes with halogenido-bridged dimeric core[J]. Coord. Chem. Rev., 2016,306:636-651. doi: 10.1016/j.ccr.2015.03.022

    21. [21]

      KOBAYASHI A, EHARA T, YOSHIDA M, KATO M. Quantitative thermal synthesis of Cu(Ⅰ) coordination polymers that exhibit ther-mally activated delayed fluorescence[J]. Inorg. Chem., 2020,59(14):9511-9520. doi: 10.1021/acs.inorgchem.0c00341

    22. [22]

      LI Z X, HU C, SUN Z Z, LI X Q, HAN H L, YANG Y P, XIN X L, JIN Q H. Syntheses, spectroscopic properties and terahertz time domain spectroscopy of two copper(Ⅰ) complexes based on diphos-phine ligands and N-donor ligands[J]. Chinese J. Inorg. Chem., 2021,37(8):1504-1512.  

    23. [23]

      BENITO Q, GOFF X F L, NOCTON G, FARGUES A, GARCIA A, BERHAULT A, KAHLAL S, SAILLARD J Y, MARTINEAU C, GACOIN T, BOILOT J P, PERRUCHAS S. Geometry flexibility of copper iodide clusters: Variability in luminescence thermochromism[J]. Inorg. Chem., 2015,54:4483-4494. doi: 10.1021/acs.inorgchem.5b00321

    24. [24]

      LIU Z W, QAYYUM M F, WU C, WHITED M T, DJUROVICH P I, HODGSON K O, HEDMAN B, SOLOMON E I, THOMPSON M K. Codeposition route to CuI-pyridine coordination complexes for organic light-emitting diodes[J]. J. Am. Chem. Soc., 2011,133:3700-3703. doi: 10.1021/ja1065653

    25. [25]

      ZHAO C W, MA J P, LIU Q K, WANG X R, LIU Y, YANG J, YANG J S, DONG Y B. An in situ self-assembled Cu4I4-MOF-based mixed matrix membrane: A highly sensitive and selective naked-eye sensor for gaseous HCl[J]. Chem. Commun., 2016,52:5238-5241. doi: 10.1039/C6CC00189K

    26. [26]

      LIANG P Y, KOBAYASHI A, SAMEERA W, YOSHIDA M, KATO M. Solvent-free thermal synthesis of luminescent dinuclear Cu(Ⅰ) complexes with triarylphosphines[J]. Inorg. Chem., 2018,57(10):5929-5938. doi: 10.1021/acs.inorgchem.8b00439

    27. [27]

      KITAGAWA H, OZAWA Y, TORIUMI K. Flexibility of cubane-like Cu 4I4 framework: Temperature dependence of molecular structure and luminescence thermochromism of[J]. Chem. Commun., 2010,46:6302-6304. doi: 10.1039/c0cc01434f

    28. [28]

      GROSJEAN S, HASSAN Z, WÖLL C, BRÄSE S. Diverse multi-func-tionalized oligoarenes and heteroarenes for porous crystalline materi-als[J]. Eur. J. Org. Chem., 2019(7):1446-1460.

    29. [29]

      HAQUE A, BALUSHI R A A, AL-BUSAIDI I J, ILMI R, RASBI N A, JAYAPAL M, KHAN M S, RAITHBY P R. Synthesis, optical spectroscopy, structural, and DFT studies on dimeric iodo-bridged copper(Ⅰ) complexes[J]. J. Organomet. Chem., 2019,892:75-82. doi: 10.1016/j.jorganchem.2019.04.017

    30. [30]

      HIRTENLEHNER C, MONKOWIUS U. Syntheses, crystal struc-tures and blue luminescence of Cu 2X2(PPh3)2[J]. Inorg. Chem. Commun., 2012,15:109-112. doi: 10.1016/j.inoche.2011.10.003

    31. [31]

      CHEN T, LI M, LIU J. π - π stacking interaction: A nondestructive and facile means in material engineering for bioapplications[J]. Cryst. Growth Des., 2018,18(5):2765-2783. doi: 10.1021/acs.cgd.7b01503

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    4. [4]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    5. [5]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    6. [6]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    15. [15]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    16. [16]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    17. [17]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    18. [18]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    19. [19]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    20. [20]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

Metrics
  • PDF Downloads(0)
  • Abstract views(151)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return