Citation: Huirong BAO, Jun YANG, Xiaomiao FENG. Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008 shu

Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition

  • Corresponding author: Xiaomiao FENG, iamxmfeng@njupt.edu.cn
  • Received Date: 7 January 2025
    Revised Date: 21 April 2025

Figures(9)

  • The NiCoP/PPy/CC composite material composed of nickel-cobalt bimetallic phosphide (NiCoP) and polypyrrole (PPy) was constructed on the surface of carbon cloth (CC) by one-step electrodeposition, and the effect of the addition amount of pyrrole on the morphology, structure, and properties of the material was investigated. When the concentration of pyrrole was 3 mol·L-1, the electrochemical performance of the NiCoP/PPy/CC-3 electrode was the best, with good electrochemical performance in a three-electrode system. At a current density of 4.0 mA·cm-2, the area-specific capacitance of the electrode was 1 068.11 mF·cm-2, and the corresponding mass-specific capacitance was 508.62 F·g-1. After 6 000 cycles at a current density of 8.0 mA·cm-2, the capacitance retention rate was 90.1%. The electrode was applied to a flexible asymmetric supercapacitor. The flexible device could achieve a 180° bending, and the initial specific capacitance of the device remained 88.6% after 10 000 cycles at a current density of 8.0 mA·cm-2. In addition, two asymmetric supercapacitors in series can effectively light up a yellow light-emitting diode (LED).
  • 加载中
    1. [1]

      NAJIB S, ERDEM E. Current progress achieved in novel materials for supercapacitor electrodes: Mini review[J]. Nanoscale Adv., 2019,1(8):2817-2827. doi: 10.1039/C9NA00345B

    2. [2]

      POONAM , SHARMA K, ARORA A, TRIPATHI S K. Review of supercapacitors: Materials and devices[J]. J. Energy Storage, 2019,21(1):801-825.

    3. [3]

      ZHANG X M, WU A P, WANG X W, TIAN C G, AN R Y, FU H G. Porous NiCoP nanosheets as efficient and stable positive electrodes for advanced asymmetric supercapacitors[J]. J. Mater. Chem. A, 2018,6(37):17905-17914. doi: 10.1039/C8TA05551C

    4. [4]

      ZHANG N, LI Y F, XU J Y, LI J J, WEI B, DING Y, AMORIM I, THOMAS R, THALLURI S M, LIU Y Y, YU G H, LIU L F. High-performance flexible solid-state asymmetric supercapacitors based on bimetallic transition metal phosphide nanocrystals[J]. ACS Nano, 2019,13(9):10612-10621. doi: 10.1021/acsnano.9b04810

    5. [5]

      WANG X, KIM H M, XIAO Y, SUN Y K. Nanostructured metal phosphide-based materials for electrochemical energy storage[J]. J. Mater. Chem. A, 2016,4(39):14915-14931. doi: 10.1039/C6TA06705K

    6. [6]

      ZHANG N, XU J Y, WEI B, LI J J, AMORIM I, THOMAS R, THALLURI S M, WANG Z C, ZHOU W Y, XIE S S, LIU L F. Mille-Crêpe-like metal phosphide nanocrystals/carbon nanotube film composites as high-capacitance negative electrodes in asymmetric super-capacitors[J]. ACS Appl. Mater. Interfaces, 2020,3(5):4580-4588.

    7. [7]

      SIVAKUMAR P, JUNG M G, RAJ C J, RANA H H, PARK H S. 1D interconnected porous binary transition metal phosphide nanowires for high performance hybrid supercapacitors[J]. Int. J. Energy Res., 2021,45(11):17005-17014. doi: 10.1002/er.6874

    8. [8]

      YU Z N, TETARD L, ZHAI L, THOMAS J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions[J]. Energy Environ. Sci., 2015,8(3):702-730. doi: 10.1039/C4EE03229B

    9. [9]

      SHAO Y B, ZHAO Y Q, LI H, XU C L. Three-dimensional hierarchical NixCo1-xO/NiyCo2-yP@C hybrids on nickel foam for excellent supercapacitors[J]. ACS. Appl. Mater. Interfaces, 2016,8(51):35368-35376. doi: 10.1021/acsami.6b12881

    10. [10]

      IBANEZ J G, RINCÓN M E, GUTIERREZ-GRANADOS S, CHAHMA M H, JARAMILLO-QUINTERO O A, FRONTANA-URIBE B A. Conducting polymers in the fields of energy, environmental remediation, and chemical-chiral sensors[J]. Chem. Rev., 2018,118(9):4731-4816. doi: 10.1021/acs.chemrev.7b00482

    11. [11]

      CHEN Z, ZHAO X J, LU R Y, HONG R Z, YANG X M. Electrodeposition of polypyrrole as binder-free and high mass-loading electrodes for flexible supercapacitors[J]. Synth. Met., 2023,296(5)117378.

    12. [12]

      MUSTAFA M N, ABDAH M A A M, NUMAN A, SULAIMAN Y, WALVEKAR R, KHALID M. Development of high-performance MXene/nickel cobalt phosphate nanocomposite for electrochromic energy storage system using response surface methodology[J]. J. Energy Storage, 2023,68(12)107880.

    13. [13]

      NIE S B, ZHANG C, PENG C, WANG D Y, DING D, HE Q L. Study of the synergistic effect of nanoporous nickel phosphates on novel intumescent flame retardant polypropylene composites[J]. J. Spectrosc., 2015(1):1-7.

    14. [14]

      CHEN J J, CHANG D, XIAO F H, DENG G J. Four-component quinazoline synthesis from simple anilines, aromatic aldehydes and ammonium iodide under metal-free conditions[J]. Green Chem., 2018,20(24):5459-5463. doi: 10.1039/C8GC02654H

    15. [15]

      YAO Z W, WANG G Z, SHI Y, ZHAO Y, JIANG J, ZHANG Y C, WANG H Y. One-step synthesis of nickel and cobalt phosphide nanomaterials via decomposition of hexamethylenetetramine-containing precursors[J]. Dalton Trans., 2015,44(31):14122-14129. doi: 10.1039/C5DT02319J

    16. [16]

      LIU Y Y. Synthesis, characterization and properties research of bimetal phosphide NiCoP and its composite[D]. Xi'an: Shaanxi University of Science & Technology, 2015: 1-62

    17. [17]

      POJANAVARAPHAN T, MAGARAPHAN R. Fabrication and characterization of new semiconducting nanomaterials composed of natural layered silicates (Na+ -MMT), natural rubber (NR), and polypyr-role (PPy)[J]. Polymer, 2010,51(5):1111-1123. doi: 10.1016/j.polymer.2009.07.003

    18. [18]

      IBRAHIM F A, KHALAF A I, BADR M M. Conductive polypyrrole: Synthesis, characterization, thermal, and electrical properties for different applications[J]. Phys. Scr., 2024,99(6)065971. doi: 10.1088/1402-4896/ad474e

    19. [19]

      LIU Y, WANG H H, ZHOU J, BIAN L Y, ZHU E W, HAI J F, TANG J, TANG W H. Graphene/polypyrrole intercalating nanocom-posites as supercapacitors electrode[J]. Electrochim. Acta, 2013,112(1):44-52.

    20. [20]

      DUBAL D P, CHODANKAR N R, CABAN-HUERTAS Z, WOLFART F, VIDOTTI M, HOLZE R, LOKHANDE C D, GOMEZ-ROMERO P. Synthetic approach from polypyrrole nanotubes to nitrogen doped pyrolyzed carbon nanotubes for asymmetric supercapacitors[J]. J. Power Sources, 2016,308(15):158-165.

    21. [21]

      WANG B, HE X Y, LI H P, LIU Q, WANG J, YU L, YAN H J, LI Z S, WANG P. Optimizing the charge transfer process by designing Co3O4@PPy@MnO2 ternary core-shell composite[J]. J. Mater. Chem. A, 2014,2(32):12968-12973. doi: 10.1039/C4TA02380C

    22. [22]

      JIAN X, YANG H M, LI J G, ZHANG E H, CAO L L, LIANG Z H. Flexible all-solid-state high-performance supercapacitor based on electrochemically synthesized carbon quantum dots/polypyrrole composite electrode[J]. Electrochim. Acta, 2017,228(20):483-493.

    23. [23]

      PU J, CUI F, CHU S B, WANG T T, SHENG E H, WANG Z H. Prep- aration and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials[J]. ACS Sustain. Chem. Eng., 2013,2(4):809-815.

    24. [24]

      HE S X, LI Z W, MI H Y, JI C C, GUO F J, ZHANG X A, LI Z, DU Q, QIU J S. 3D nickel-cobalt phosphide heterostructure for high-performance solid-state hybrid supercapacitors[J]. J. Power Sources, 2020,467(15)228324.

    25. [25]

      MAO Y Y, LI Y, XIE J Y, LIU H, GUO C J, HU W B. Triboelectric nanogenerator/supercapacitor in-one self-powered textile based on PTFE yarn wrapped PDMS/MnO2NW hybrid elastomer[J]. Nano Energy, 2021,84(5)105918.

    26. [26]

      ZHAO N, FAN H Q, ZHANG M C, MA J W, WANG C, YADAV A K, LI H, JIANG X B, CAO X Q. Beyond intercalation-based supercapacitors: The electrochemical oxidation from Mn3O4 to Li4Mn5O12 in Li2SO4 electrolyte[J]. Nano Energy, 2020,71(5)104626.

    27. [27]

      ZHOU S H, HUANG P, XIONG T Z, YANG F, YANG H, HUANG Y C, LI D, DENG J Q, BALOGUN M S. Sub-thick electrodes with enhanced transport kinetics via in situ epitaxial heterogeneous interfaces for high areal-capacity lithium ion batteries[J]. Small, 2021,17(26)2100778. doi: 10.1002/smll.202100778

    28. [28]

      LIU S D, KANG L, HU J S, JUNG E, HENZIE J, ALOWASHEEIR A, ZHANG J, MIAO L, YAMAUCHI Y, JUN S C. Realizing superior redox kinetics of hollow bimetallic sulfide nanoarchitectures by defect-induced manipulation toward flexible solid-state supercapacitors[J]. Small, 2021,18(5)2104507.

    29. [29]

      ANURATHA K S, SU Y Z, HUANG M K, HSIEH C K, XIAO Y M, LIN J Y. High-performance hybrid supercapacitors based on electro-deposited amorphous bimetallic nickel cobalt phosphide nanosheets[J]. J. Alloy. Compd., 2022,897(47)163031.

    30. [30]

      PENG H, ZHOU J Z, CHEN Z Y, ZHAO R, LIANG J, WANG F, MA G F, LEI Z Q. Integrated carbon nanosheet frameworks inlaid with nickel phosphide nanoparticles by substrate-free chemical blowing and phosphorization for aqueous asymmetric supercapacitor[J]. J. Alloy. Compd., 2019,797(28):1095-1105.

    31. [31]

      PENG Z W, DIAO Y X, HUANG J Y, ZHANG C K, CHEN H C. Construction of NiCoP-NiCoO/NiCo-POx heterostructure by controllable phosphating effect for high-performance hybrid supercapacitors and alkaline zinc batteries[J]. J. Alloy. Compd., 2023,965(36)171502.

    32. [32]

      WANG Y M, ZHANG Y, DU C, CHEN J, TIAN Z F, XIE M J, WAN L. Rational synthesis of CoFeP@nickel-manganese sulfide core-shell nanoarrays for hybrid supercapacitors[J]. Dalton Trans., 2021,50(46):17181-17193. doi: 10.1039/D1DT03196A

    33. [33]

      JIANG S, PANG M J, LIU R, SONG J, WANG R W, LI N, PAN Q L, YANG H, HE W X, ZHAO J G. Enhancement of the capacitance of rich-mixed-valence Co-Ni bimetal phosphide by oxygen doping for advanced hybrid supercapacitors[J]. J. Alloy. Compd., 2022,895(6)162451.

    34. [34]

      WANG H Y, ZHU Y L, ZONG Q, WANG Q Q, YANG H, ZHANG Q L. Hierarchical NiCoP/Co(OH)2 nanoarrays for high-performance asymmetric hybrid supercapacitors[J]. Electrochim. Acta, 2019,321(29)134746.

  • 加载中
    1. [1]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    5. [5]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    6. [6]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    9. [9]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    10. [10]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    11. [11]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    12. [12]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    13. [13]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    14. [14]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    15. [15]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    16. [16]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    17. [17]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    18. [18]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    20. [20]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

Metrics
  • PDF Downloads(0)
  • Abstract views(280)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return