Citation: Yuanyu YANG, Jianhua XUE, Yujia BAI, Lulu CUI, Dongdong YANG, Qi MA. Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005 shu

Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands

Figures(9)

  • Two new complexes, [Zn2(L1)(HL1)(NO3)]·CH3OH (1) and [Zn3(L2)(L3)3Cl]·CH3OH (2), were successfully synthesized by'one-pot'method based on cinnoline-3-ylhydrazine ligand and zinc with 2-hydroxy-4-methoxybenz-aldehyde and 2-hydroxy-3-methoxybenzaldehyde ligands, respectively, where H2L1=5-methoxy-2-(phthalazin-1-yl-hydrazonomethyl)-phenol, H2L2=2-methoxy-6-(phthalazin-1-yl-hydrazonomethyl)-phenol, HL3=2-(1, 8-dihydro-[1,2,4]triazolo[3,4-α]phthalazin-3-yl)-6-methoxy-phenol. Complexes 1 and 2 were characterized by infrared spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffraction, etc. It is worth noting that the cinnolin-3-yl-hydrazine ligand and 2-hydroxy-3-methoxybenzaldehyde form two types of Schiff bases (H2L2 and HL3) when in situ reacting and coordinating with Zn(Ⅱ), and HL3 also has two coordination modes. In addition, the fluorescence performance showed that complex 1 can achieve selective and sensitive sensing of Al3+ in water with a detection limit of 6.37 μmol·L-1.
  • 加载中
    1. [1]

      HU Z C, DEIBERT B J, LI J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chem. Soc. Rev., 2014,43(16):5815-5840. doi: 10.1039/C4CS00010B

    2. [2]

      BAK J M, JUNG S H, LEE H I. Reusable polymeric films for fluorometric Al3+ detection in anti-counterfeiting and security applications[J]. Sens. Actuator B‒Chem., 2021,345130420. doi: 10.1016/j.snb.2021.130420

    3. [3]

      ZENG J Z, XU X, XUE L, XU Y, WANG X, ZHANG Y, WANG H B. A novel pyridine and julolidine based chemosensor for Al3+ detection[J]. ChemistrySelect, 2023,8(11)e202204556. doi: 10.1002/slct.202204556

    4. [4]

      TOHORA N, AHAMED S, SAHOO R, MAHATO M, SULTANA T, LAMA S, MAITI A, DAS S K. Solid-state brightness and Al3+ ions-triggered flower-shaped nano-luminogen for cascade detection of Al3+ and PO43- ions[J]. Opt. Mater., 2024,155115803. doi: 10.1016/j.optmat.2024.115803

    5. [5]

      WANG S, MA L, LIU G, PU S Z. Diarylethene-based fluorescent and colorimetric chemosensor for the selective detection of Al3+ and CN-[J]. Dyes Pigment., 2019,164:257-266. doi: 10.1016/j.dyepig.2019.01.029

    6. [6]

      FU C C, SUN X R, ZHANG G D, SHI P F, CUI P. Porphyrin-based metal-organic framework probe: Highly selective and sensitive fluorescent turn-on sensor for M3+ (Al3+, Cr3+, and Fe3+) ions[J]. Inorg. Chem., 2021,60(2):1116-1123. doi: 10.1021/acs.inorgchem.0c03268

    7. [7]

      CHEN B B, ZENG Y, HU B. Study on speciation of aluminum in human serum using zwitterionic bile acid derivative dynamically coated C18 column HPLC separation with UV and on-line ICP-MS detection[J]. Talanta, 2010,81:180-186. doi: 10.1016/j.talanta.2009.11.057

    8. [8]

      LIU Y C, LL N, ZHANG Y L, WANG Y. Diphenyl imidazole-based fluorescent chemosensor for Al3+ and its Al3+ complex toward water detection in food products[J]. Food Chem., 2023,420136138. doi: 10.1016/j.foodchem.2023.136138

    9. [9]

      YU C W, YANG M, ZHANG J. A pyrene-based multifunctional fluorescent probe for the detection of Cu2+ and Al3+[J]. Microchem. J., 2025,208112531. doi: 10.1016/j.microc.2024.112531

    10. [10]

      GU D X, YANG W T, WANG F X, LI M L, LIU L J, LI H H, PAN Q H. A metal-organic gel-based fluorescent chemosensor for selective Al3+ detection[J]. Appl. Organomet. Chem., 2019,33(11)e5179. doi: 10.1002/aoc.5179

    11. [11]

      YANG T, XU C L, LI S. R, HU Z R, FENG G D, GAO H C. Development of a fluorescent probe for detecting Al3+ in cooked wheaten food based on phosphonic acid group functionalized polythiophene derivatives[J]. Luminescence, 2021,36(7):1600-1607. doi: 10.1002/bio.4093

    12. [12]

      GUO F F, WANG B B, WU W N, BI W Y, XU Z H, FAN Y C, BIAN L Y, WANG Y. A pyrazine-containing hydrazone derivative for sequential detection of Al3+ and F-[J]. J. Mol. Struct., 2022,1251132073. doi: 10.1016/j.molstruc.2021.132073

    13. [13]

      YUE X L, WANG Z Q, LI C R, YANG Z Y. Naphthalene-derived Al3+-selective fluorescent chemosensor based on PET and ESIPT in aqueous solution[J]. Tetrahedron Lett., 2017,58(48):4532-4537. doi: 10.1016/j.tetlet.2017.10.044

    14. [14]

      LIU Y L, ZHANG Y Q, SHENG M, KANG Y H, JIA B B, LI W B, FU Y. A novel pyrene-based fluorescent probe for Al3+ detection[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2023,287122085. doi: 10.1016/j.saa.2022.122085

    15. [15]

      NASKAR B, BAUZA A, FRONTERA A, MAITI D K, DAS M C, GOSWANMI S. A versatile chemosensor for the detection of Al3+ and picric acid (PA) in aqueous solution[J]. Dalton Trans., 2018,47(44):15907-15916. doi: 10.1039/C8DT02289E

    16. [16]

      WANG H, ZHANG Y, XU Y, WANG X, ZENG J Z, XUE L. A novel coumarin-based fluorescent probe for sequential detection of Al3+ and H2PO4-[J]. ChemistrySelect, 2023,8(9)e202204839. doi: 10.1002/slct.202204839

    17. [17]

      YANG, MA, XUE, YANG, SHI, ZHAO, M, Q. A highly selective fluorescent probe based on multi-binding site hydrazone chemosensor for Al3+ detection[J]. Microchem. J., 2024,200110495. doi: 10.1016/j.microc.2024.110495

    18. [18]

      PAN Y, ZHAO P, ZHOU C P, YAN L Q, WU X Z. A dual-functional fluorescent probe based on kaolin nanosheets for the detection and separation of aluminum ions[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2023,295122636. doi: 10.1016/j.saa.2023.122636

    19. [19]

      YU Z X, SONG W, LIU Y, DING Y X, MENG F H, WANG S J, YOU L X. Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands[J]. Chinese J. Inorg. Chem., 2024,40(12):2415-2421. doi: 10.11862/CJIC.20240304

    20. [20]

      LUO J, LIU B S, ZHANG Y C, WANG B K, GUO B B, SHE L, CHEN T H. Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution[J]. Chinese J. Inorg. Chem., 2024,40(12):2438-2444. doi: 10.11862/CJIC.20240240

    21. [21]

      LIANG J, LIU H B, WANG J. Pyrene-based ratiometric and fluorescent sensor for selective Al3+ detection[J]. Inorg. Chim. Acta, 2019,489:61-66. doi: 10.1016/j.ica.2019.02.009

    22. [22]

      HAN S H, ZENG Y Y, LIU M M, YANG L, WANG J X, SONG X Z. Regulating sensing patterns in fluorescent probes for discriminative detection of biothiols[J]. Anal. Chem., 2025,97(1):419-426. doi: 10.1021/acs.analchem.4c04523

    23. [23]

      LIU Y L, LI L, YUE M L, YANG L, SUN F, XU G Q, FU Y, YE F. A switch-on fluorescent probe for detection of mesotrione based on the straightforward cleavage of carbon-nitrogen double bond of Schiff base[J]. Chem. Eng. J., 2022,430132758. doi: 10.1016/j.cej.2021.132758

    24. [24]

      ZHANG Q, LI X, YU L, WANG L X, WEN Z Q, SU P C, SUN Z L, WANG S H. Machine learning-assisted fluorescence visualization for sequential quantitative detection of aluminum and fluoride ions[J]. J. Environ. Sci., 2025,149:68-78. doi: 10.1016/j.jes.2024.01.023

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    3. [3]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    4. [4]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    5. [5]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    6. [6]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    7. [7]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    8. [8]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    9. [9]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    10. [10]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    11. [11]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    12. [12]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    13. [13]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    14. [14]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    15. [15]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    18. [18]

      Shu TianWenxin HuangJunrui HuHuiling WangZhipeng ZhangLiying XuJunrong LiYao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336

    19. [19]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    20. [20]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

Metrics
  • PDF Downloads(0)
  • Abstract views(236)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return