Citation: Jianding LI, Junyang FENG, Huimin REN, Gang LI. Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464 shu

Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid

Figures(13)

  • Using 2,5-dibromophenyl-4, 6-dicarboxylic acid (H2BDC-Br2) as the bridging ligand and through the rapid synthesis method, it was self-assembled with HfCl4 to successfully prepare a three-dimensional porous hafnium-based metal-organic framework (UiO-66-Br2-Hf, 1). Firstly, through characterization methods such as thermogravimetric analysis (TGA) and powder X-ray diffraction (PXRD), the excellent structural stability of 1 was confirmed. Subsequently, its proton conductivity, assisted by water molecules, was systematically investigated, and it was found that the proton conductivity of 1 was positively correlated with temperature and relative humidity (RH). At 100 ℃ and 98% RH, its proton conductivity reached 3.11×10-3 S·cm-1. Finally, combined with structural analysis, nitrogen and water vapor adsorption tests, and activation energy calculations, the proton conductivity mechanism of 1 was explored.
  • 加载中
    1. [1]

      HAN M F, GU J, XUE S D, ZHU S J, HUANG R S. Preparation and properties of platinum-cobalt-manganese alloy catalysts for fuel cells[J]. Chinese J. Inorg. Chem., 2023,39(7):1253-1260. doi: 10.11862/CJIC.2023.105

    2. [2]

      ZHAO X Y, WU Y E. Synthesis of high-performance and low-loading PtCo/C proton exchange membrane fuel cell catalysts[J]. Chinese J. Inorg. Chem., 2021,37(8):1457-1464. doi: 10.11862/CJIC.2021.172

    3. [3]

      KOH S. Hydroxamate-based metal-organic frameworks[J]. Chem. -Eur. J., 2024,31(7)e202403812.

    4. [4]

      KIRANDEEP , KUMAR A, MEHTA R, KUMAR S, SHARMA S K, GABA R, KATARIA R. Mixed-ligand-based luminescent MOFs as chemical sensors for toxic environmental contaminants[J]. J. Mol. Struct., 2025,1325140898. doi: 10.1016/j.molstruc.2024.140898

    5. [5]

      ZHANG M D, DAI Q B, ZHENG H G, CHEN M D, DAI L M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting[J]. Adv. Mater., 2018,301705431. doi: 10.1002/adma.201705431

    6. [6]

      ZHU L Y, YANG H B, XU T, SHEN F, SI C L. Precision-engineered construction of proton-conducting metal-organic frameworks[J]. Nano-Micro Lett., 2025,17(1)87. doi: 10.1007/s40820-024-01558-3

    7. [7]

      KANG D W, KANG M, HONG C S. Post-synthetic modification of porous materials: Superprotonic conductivities and membrane applications in fuel cells[J]. J. Mater. Chem. A, 2020,8:7474-7494. doi: 10.1039/D0TA01733G

    8. [8]

      HU Z G, WANG Y X, ZHAO D. The chemistry and applications of hafnium and cerium(Ⅳ) metal-organic frameworks[J]. Chem. Soc. Rev., 2021,50:4629-4683. doi: 10.1039/D0CS00920B

    9. [9]

      CHEN X, LI G. Proton conductive Zr-based MOFs[J]. Inorg. Chem. Front., 2020,7:3765-3784. doi: 10.1039/D0QI00883D

    10. [10]

      LUO H B, REN L T, NING W H, LIU S X, LIU J L, REN X M. Robust crystalline hybrid solid with multiple channels showing high anhydrous proton conductivity and a wide performance temperature range[J]. Adv. Mater., 2016,28:1663-1667. doi: 10.1002/adma.201504591

    11. [11]

      REN L T, LI X P, LIU J L, REN X M. Synthesis and investigation of proton conductivity for intercalated kaolinite with 4-amidinopyridinium chloride[J]. J. Solid State Chem., 2015,232:31-36. doi: 10.1016/j.jssc.2015.09.001

    12. [12]

      XUE W L, DENG W H, CHEN H, LIU R H, TAYLOR J M, LI Y K, WANG L, DENG Y H, LI W H, WEN Y Y, WANG G E, WAN C Q, XU G. MOF-directed synthesis of crystalline ionic liquids with enhanced proton conduction[J]. Angew. Chem.-Int. Edit., 2020,60:1290-1297.

    13. [13]

      HE T, XU X B, NI B, WANG H Q, LONG Y, HU W P, WANG X. Fast and scalable synthesis of uniform zirconium-, hafnium-based metal-organic framework nanocrystals[J]. Nanoscale, 2017,9(48):19209-19215. doi: 10.1039/C7NR06274E

    14. [14]

      JAKOBSEN S, GIANOLIO D, WRAGG D S, NILSEN M H, EMERICH H, BORDIGA S, LAMBERTI C, OLSBYE U, TILSET M, LILLERUD K P. Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66[J]. Phys. Rev. B: Condens. Matter Mater. Phys., 2012,86(12)125429. doi: 10.1103/PhysRevB.86.125429

    15. [15]

      LIU Y R, CHEN Y Y, ZHAO H Y, LI G. Exploration of single-crystal proton conduction in ordered networks[J]. Coor. Chem. Rev., 2024,499215516. doi: 10.1016/j.ccr.2023.215516

    16. [16]

      LI W H, DENG W H, WANG G E, XU G. Conductive MOFs[J]. EnergyChem, 2020,2100029. doi: 10.1016/j.enchem.2020.100029

    17. [17]

      SAHOO R, PAL S C, DAS M C. Solid-state proton conduction driven by coordinated water molecules in metal-organic frameworks and co-ordination polymers[J]. ACS Energy Lett., 2022,7:4490-4500. doi: 10.1021/acsenergylett.2c02275

    18. [18]

      ZHANG J, KONG Y R, LIU Y Y, LUO H B, ZOU Y, ZANG S Q, REN X M. Superprotonic conduction of acidified benzimidazole-linked covalent organic framework[J]. ACS Mater. Lett., 2022,4:2597-2603. doi: 10.1021/acsmaterialslett.2c00432

    19. [19]

      CHEN X, WANG S Z, XIAO S H, LI Z F, LI G. High protonic conductivity of three highly stable nanoscale hafnium (Ⅳ) metal-organic frameworks and their imidazole-loaded products[J]. Inorg. Chem., 2022,61:4938-4947. doi: 10.1021/acs.inorgchem.1c03679

    20. [20]

      QIAO J Q, REN H M, CHEN X, LI Z F, LI G. Icing on the cake: Imidazole-anchored strategy to enhance the proton conductivity of two isostructural Ce (Ⅳ)/Hf(Ⅳ) metal-organic frameworks[J]. Inorg. Chem., 2023,62:21309-21321. doi: 10.1021/acs.inorgchem.3c03400

    21. [21]

      LI X M, LIU J, ZHAO C, ZHOU J L, ZHAO L, LI S L, LAN Y Q. Strategic hierarchical improvement of superprotonic conductivity in a stable metal-organic framework system[J]. J. Mater. Chem. A, 2019,7:25165-25171. doi: 10.1039/C9TA10286H

    22. [22]

      YE Y, GONG L, XIANG S C, ZHANG Z J, CHEN B L. Metal-organic frameworks as a versatile platform for proton conductors[J]. Adv. Mater., 2020,321907090. doi: 10.1002/adma.201907090

    23. [23]

      KREUER K D, RABENAU A, WEPPNER W. New model for the interpretation of the conductivity of fast proton conductors[J]. Angew. Chem.-Int. Edit., 1982,21:208-209.

    24. [24]

      KOLOKOLOV D L, LIM D, KITAGAWA H. Characterization of proton dynamics for the understanding of conduction mechanism in proton conductive metal-organic frameworks[J]. Chem. Rec., 2020,20:1297-1313. doi: 10.1002/tcr.202000072

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    3. [3]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    4. [4]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    5. [5]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    6. [6]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    7. [7]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    8. [8]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    9. [9]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    10. [10]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    11. [11]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    14. [14]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    15. [15]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    16. [16]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    17. [17]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    18. [18]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    19. [19]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    20. [20]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

Metrics
  • PDF Downloads(0)
  • Abstract views(273)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return