Citation: Yu BAI, Jijiang WANG, Long TANG, Erlin YUE, Chao BAI, Xiao WANG, Yuqi ZHANG. A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1217-1226. doi: 10.11862/CJIC.20240457 shu

A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol

  • Corresponding author: Jijiang WANG, yadxwjj@126.com
  • Received Date: 25 December 2024
    Revised Date: 5 April 2025

Figures(6)

  • A novel coordination polymer (CP) {[Cd2(L)(1,4-bimb)1.5(DMF)2]·DMF}n (1) (H4L=5, 5′-[1,1′-biphenyl-4,4′-diylbis(oxy)]diisophthalic acid, 1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene) has been designed and synthesized through solvothermal reaction. Structural analysis shows that Cd(Ⅱ) is connected by H4L and 1,4-bimb to form a 2D network, and 1,4-bimb further expands the 2D network into a 3D framework. CP 1 can be used as an excellent fluorescence sensor for Fe3+ and 4-nitrophenol (4-NP), with low detection limits and good anti-interference. The detection limits of Fe3+ and 4-NP were 0.034 and 0.031 μmol·L-1, respectively. In addition, the fluorescence quenching mechanism was studied. 1 was successfully applied to determine Fe3+ and 4-NP content in the Yanhe River water sample.
  • 加载中
    1. [1]

      WEN Y T, QIN T, ZHOU Y Y. Metal-organic frameworks based sensor platforms for rapid detection of contaminants in wastewater[J]. Langmuir, 2024,40(10):5026-5039. doi: 10.1021/acs.langmuir.3c03545

    2. [2]

      JIE B R, LIN H D, ZHAI Y X, YE J Y, ZHANG D Y, XIE Y F, ZHANG X D, YANG Y Q. Mechanism, design and application of fluorescent recognition based on metal organic frameworks in pollutant detection[J]. Chem. Eng. J., 2023,454139931. doi: 10.1016/j.cej.2022.139931

    3. [3]

      HOU L L, SONG Y H, XIAO Y J, WU R, WANG L. ZnMOF-74 responsive fluorescence sensing platform for detection of Fe3+[J]. Microchem. J., 2019,150104154. doi: 10.1016/j.microc.2019.104154

    4. [4]

      XU H, DONG Y Y, WU Y H, REN W J, ZHAO T, WANG S L, GAO J K. An —OH group functionalized MOF for ratiometric Fe3+ sensing[J]. J. Solid State Chem., 2018,258:441-446. doi: 10.1016/j.jssc.2017.11.013

    5. [5]

      WEN M Y, FU L S, DONG G Y. Two Cd(Ⅱ)-MOFs containing pyridylbenzimidazole ligands as fluorescence sensors for sensing enrofloxacin, nitrofurazone and Fe3+[J]. J. Mol. Struct., 2023,1285135488. doi: 10.1016/j.molstruc.2023.135488

    6. [6]

      ZHANG X F, FENG L H, MA S Y, XIA T F, JIAO F F, KONG Z, DUAN X. A microporous Tb-based MOF for multifunctional detection of the α-CHC, Cu2+ and Fe3+[J]. J. Solid State Chem., 2022,312123232. doi: 10.1016/j.jssc.2022.123232

    7. [7]

      MENG X Y, CAO L H, LI B. Metal-organic framework based on pyrazinoquinoxaline tetracarboxylic acid for fluorescence sensing for nitro explosives[J]. Inorg. Chem., 2024,63(1):518-525. doi: 10.1021/acs.inorgchem.3c03401

    8. [8]

      CHENG T T, HU J S, ZHOU C H, WANG Y M, ZHANG M D. Luminescent metal-organic frameworks for nitro explosives detection[J]. Sci. China Chem., 2016,59(8):929-947. doi: 10.1007/s11426-016-0061-5

    9. [9]

      QIU Z J, FAN S T, XING C Y, SONG M M, NIE Z J, XU L, ZHANG S X, WANG L, ZHANG S, LI B J. Facile fabrication of an AIE-active metal-organic framework for sensitive detection of explosives in liquid and solid phases[J]. ACS Appl. Mater. Interfaces, 2020,12(49):55299-55307. doi: 10.1021/acsami.0c17165

    10. [10]

      SUN L, ZHANG Y, LV X S, LI H D. A luminescent Eu-based MOFs material for the sensitive detection of nitro explosives and development of fingerprint[J]. Inorg. Chem. Commun., 2023,156111267. doi: 10.1016/j.inoche.2023.111267

    11. [11]

      WANG K C, TIAN X, JIN Y H, SUN J, ZHANG Q H. Heterometallic hybrid open frameworks: Synthesis and application for selective detection of nitro explosives[J]. Cryst. Growth Des., 2017,17(4):1836-1842. doi: 10.1021/acs.cgd.6b01808

    12. [12]

      HU Q L, XU T, GU J M, ZHANG L R, LIU Y L. A series of isostructural lanthanide metal-organic frameworks: Effective fluorescence sensing for Fe3+, 2, 4-DNP and 4-NP[J]. CrystEngComm, 2022,24:2759-2766. doi: 10.1039/D2CE00106C

    13. [13]

      HUSSAIN S, JUNAID H M, WASEEM M T, RAUF W, SHAIKH A J, SHAHZAD S A. Aggregation-induced emission of quinoline based fluorescent and colorimetric sensors for rapid detection of Fe3+ and 4-nitrophenol in aqueous medium[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2022,272121021. doi: 10.1016/j.saa.2022.121021

    14. [14]

      GOGOI C, BISWAS S. A new quinoline based luminescent Zr (Ⅳ) metal-organic framework for the ultrasensitive recognition of 4-nitrophenol and Fe(Ⅲ) ions[J]. Dalton Trans., 2018,47:14696-14705. doi: 10.1039/C8DT03058H

    15. [15]

      GABELICA V, MARKLUND E. Fundamentals of ion mobility spectrometry[J]. Curr. Opin. Chem. Biol., 2018,42:51-59. doi: 10.1016/j.cbpa.2017.10.022

    16. [16]

      MATRASZEK-ZUCHOWSKA I, WOZNIAK B, POSYNIAK A. Determination of hormones residues in milk by gas chromatography-mass spectrometry[J]. Food Anal. Method, 2017,10:727-739. doi: 10.1007/s12161-016-0620-5

    17. [17]

      CHEN L, MA N, PARK Y, JIN S, HWANG H, JIANG D, JUNG Y M. Highly sensitive determination of iron(Ⅲ) ion based on phenanthroline probe: Surface-enhanced Raman spectroscopy methods[J]. Spectroc. Acta Pt. A‒Molec. Biomolec. Spectr., 2018,197:43-46. doi: 10.1016/j.saa.2017.12.043

    18. [18]

      PYTLAKOWSKA K. Speciation of inorganic chromium in water samples by energy dispersive X-ray fluorescence spectrometry[J]. J. Anal. At. Spectrom., 2016,31:968-974. doi: 10.1039/C5JA00495K

    19. [19]

      WANG Z J, QIN L, CHEN J X, ZHENG H G. H-bonding interactions induced two isostructural Cd(Ⅱ) metal-organic frameworks showing different selective detection of nitroaromatic explosives[J]. Inorg. Chem., 2016,55(21):10999-11005. doi: 10.1021/acs.inorgchem.6b01521

    20. [20]

      GU Y N, LU J F, LIU H, ZHAO B, ZHOU X H, ZHAO Y Q, SUN Q Z, ZHANG B G. Two Eu3+ based complexes containing uncoordinated Lewis basic pyridyl sites and chemical sensing of 4-nitrophenol and Fe3+ ions[J]. Cryst. Growth Des., 2022,22(8):4874-4884. doi: 10.1021/acs.cgd.2c00347

    21. [21]

      YAO S L, XU H, ZHENG T F, LI Y W, HUANG H P, WANG J, CHEN L J, LIU S J, WEN H R. Blue-shifted and naked-eye recognition of H2PO4- and acetylacetone based on a luminescent metal-organic framework with new topology and good stability[J]. Chin. Chem. Lett., 2023,34(4)107532. doi: 10.1016/j.cclet.2022.05.046

    22. [22]

      CHEN Y Y, JIANG H, HAO T T, ZHANG N, LI M Y, WANG X Y, WANG X X, WEI W, ZHAO J. Fluorogenic reactions in chemical biology: Seeing chemistry in cells[J]. Chem. Biomed. Imaging, 2023,1:590-619. doi: 10.1021/cbmi.3c00029

    23. [23]

      FANG H B, CHEN Y C, JIANG Z Y, HE W J, GUO Z J. Fluorescent probes for biological species and microenvironments: From rational design to bioimaging applications[J]. Acc. Chem. Res., 2023,56:258-269. doi: 10.1021/acs.accounts.2c00643

    24. [24]

      ZHANG M Y, YI F Y, LIU L J, YAN G P, LIU H, GUO J F. An europium(Ⅲ) metal-organic framework as a multi-responsive luminescent sensor for highly sensitive and selective detection of 4-nitrophenol and I- and Fe3+ ions in water[J]. Dalton Trans., 2021,50:15593-15601. doi: 10.1039/D1DT02312H

    25. [25]

      CHENG X F, HU J S, LI J X, ZHANG M D. Tunable emission and selective luminescence sensing for nitro-pollutants and metal ions based on bifunctional lanthanide metal-organic frameworks[J]. J. Lumin., 2020,221117100. doi: 10.1016/j.jlumin.2020.117100

    26. [26]

      YANG J Y, WANG M J, ZHANG K L. A novel photoluminescent Cd(Ⅱ)-organic framework exhibiting rapid and efficient multi-responsive fluorescence sensing for trace amounts of Fe3+ ions and some NACs, especially for 4-nitroaniline and 2-methyl-4-nitroaniline[J]. J. Mater. Chem. C, 2016,4:11404-11418.

    27. [27]

      WANG J, LI N, XU Y X, PANG H. Two-dimensional MOF and COF nanosheets: Synthesis and applications in electrochemistry[J]. Chem.‒Eur. J., 2020,26:6402-6422. doi: 10.1002/chem.202000294

    28. [28]

      RAO P C, MANDAL S. Potential utilization of metal-organic frameworks in heterogeneous catalysis: A case study of hydrogen-bond donating and single-site catalysis[J]. Chem.‒Asian J., 2019,14:4087-4102. doi: 10.1002/asia.201900823

    29. [29]

      ZHANG X, CHEN A, ZHONG M, ZHANG Z H, ZHANG X, ZHOU Z, BU X H. Metal-organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion[J]. Electrochem. Energy Rev., 2019,2:29-104. doi: 10.1007/s41918-018-0024-x

    30. [30]

      WANG Y, LAI Y J, LIU J Y, FAN Z W, QUAN X H, ZHANG T, WANG C H, XU C, CHEN Q, NIU Z. A Zn-cluster-based MOF for efficient separation of C3H8/C2H6/CH4[J]. Chem & Bio Eng., 2024,1(8):658-663.

    31. [31]

      KUMAR A, KATARIA R. MOFs as versatile scaffolds to explore environmental contaminants based on their luminescence bustle[J]. Sci. Total Environ., 2024,926172129. doi: 10.1016/j.scitotenv.2024.172129

    32. [32]

      ZHAO D, YU S, JIANG W J, CAI Z H, LI D L, LIU Y L, CHEN Z Z. Recent progress in metal-organic framework based fluorescent sensors for hazardous materials detection[J]. Molecules, 2022,27(7)2226. doi: 10.3390/molecules27072226

    33. [33]

      ZHANG H, WANG J J, FAN G, TANG L, YUE E L, BAI C, WANG XIAO, ZHANG Y Q. A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol[J]. Chinese J. Inorg. Chem., 2014,40(3):646-654.

    34. [34]

      SHI C Y, ZHOU X Y, LIU D, LI L T, XU M Y, SAKIYAMA H, MUDDASSIR M, WANG J. A new 3D high connection Cu-based MOF introducing a flexible tetracarboxylic acid linker: Photocatalytic dye degradation[J]. Polyhedron, 2021,208115441. doi: 10.1016/j.poly.2021.115441

    35. [35]

      DENG X N, LI Y H, HE Y C. A new 8-connected Cd(Ⅱ)-MOF as luminescent sensor for Fe3+[J]. Inorg. Chem. Commun., 2023,155111108. doi: 10.1016/j.inoche.2023.111108

    36. [36]

      SU S Q, CHEN W, QIN C, SONG S Y, GUO Z Y, LI G H, SONG X Z, ZHU M, WANG S, HAO Z M, ZHANG H J. Lanthanide anionic metal-organic frameworks containing semirigid tetracarboxylate ligands: Structure, photoluminescence, and magnetism[J]. Cryst. Growth Des., 2012,12:1808-1815. doi: 10.1021/cg201283a

    37. [37]

      HE C, CHEN X Z, SUN C Z, ZHANG L Y, XU W F, ZHANG S Y, WANG Z Q, DAI F R. Decahexanuclear zinc(Ⅱ) coordination container featuring a flexible tetracarboxylate ligand: A self-assembly supermolecule for highly efficient drug delivery of anti-inflammatory agents[J]. ACS Appl. Mater. Interfaces, 2021,13:33812-33820. doi: 10.1021/acsami.1c06311

    38. [38]

      FAN Y, SI C D, HOU C, YAO X Q, HU D C, YANG Y X, LIU J C. S Three complexes of manganese(Ⅱ) based on a new semirigid tetracarboxylate and N-containing ligands: Synthesis, crystal structures and magnetic properties[J]. Polyhedron, 2015,98:64-70. doi: 10.1016/j.poly.2015.06.012

    39. [39]

      ZHANG S M, LI J H, FENG S J, FAN L M, LIU Y L, WEN R M. A terbium-based MOF as fluorescent probe for selective sensing of nitrobenzene and Fe3+[J]. Z. Anorg. Allg. Chem., 2024,650(24)e202400164. doi: 10.1002/zaac.202400164

    40. [40]

      CHEN X L, LIU L, SHANG L, CAI M, CUI H L, YANG H, WANG J J. A highly sensitive and multi-responsive Zn-MOF fluorescent sensor for detection of Fe3+, 2,4,6-trinitrophenol, and ornidazole[J]. Chinese J. Inorg. Chem., 2022,38(4):735-744.

    41. [41]

      ZHAN D Y, SAEED A, LI Z X, WANG C M, YU Z W, WANG J F, ZHAO N J, XU W H, LIU J H. Highly fluorescent scandium-tetracarboxylate frameworks: Selective detection of nitro-aromatic compounds, sensing mechanism, and their application[J]. Dalton Trans., 2020,4917737. doi: 10.1039/D0DT03781H

    42. [42]

      ZHAO Y F, ZENG H, ZHU X W, LU W G, LI D. Metal-organic frameworks as photoluminescent biosensing platforms: Mechanisms and applications[J]. Chem. Soc. Rev., 2021,504484. doi: 10.1039/D0CS00955E

  • 加载中
    1. [1]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    2. [2]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    3. [3]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    4. [4]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    5. [5]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    6. [6]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    7. [7]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    8. [8]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    9. [9]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    10. [10]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    11. [11]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    12. [12]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    13. [13]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    14. [14]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    15. [15]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    16. [16]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

Metrics
  • PDF Downloads(0)
  • Abstract views(226)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return