Citation: Xian BI, Sisi WANG, Jinyue ZHANG, Yujia PENG, Zhen SHEN, Hua LU. Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456 shu

Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons

Figures(5)

  • Circularly polarized luminescence (CPL) materials, characterized by their unique chiral optical properties, have shown a wide range of potential applications in the fields of 3D display, bioimaging, data storage, and spintronics. However, current research predominantly focuses on the ultraviolet/visible light spectrum, while molecules with near-infrared (NIR) CPL capabilities remain notably scarce. Near-infrared light, which offers deeper penetration and reduced background scattering, holds distinct advantages for bioimaging, detection, and secure communication. Consequently, the development of NIR CPL materials has become an urgent scientific priority. Among the various molecular scaffolds explored, β-isoindigo stands out as an ideal candidate for the development of NIR CPL materials due to its unique structural features and exceptional optical properties. As an isomer of indigo, β-isoindigo possesses abundant sites for structural modification and diverse coordination modes, enabling precise chemical tuning of its electronic structure and optical behavior. Its extended π-conjugated system not only facilitates a reduction in the energy gap to achieve efficient NIR emission but also enhances chiroptical activity through chiral functionalization, thereby improving CPL performance. Based on these attributes, the β-isoindigo framework provides a versatile molecular platform for designing and constructing high-performance NIR CPL materials. This review systematically elucidates recent advances in NIR CPL molecular materials based on the β-isoindigo scaffold, detailing their discovery, synthetic methodologies, and potential future developments. By providing a comprehensive overview, this work aims to inspire further research in this field and contribute to the rational design and optimization of next-generation NIR CPL materials.
  • 加载中
    1. [1]

      HUANG C Y, HECHT S. A blueprint for transforming indigos to photoresponsive molecular tools[J]. Chem. - Eur. J., 2023,29(43)e202300981. doi: 10.1002/chem.202300981

    2. [2]

      KAPLAN G, SEFEROĞLU Z, BERDNIKOVA D V. Photochromic derivatives of indigo: Historical overview of development, challenges and applications[J]. Beilstein J. Org. Chem., 2024,20:228-242. doi: 10.3762/bjoc.20.23

    3. [3]

      LANGER P. N-Glycosides of indigo, indirubin, and isoindigo: Blue, red, and yellow sugars and their cancerostatic activity[J]. Beilstein J. Org. Chem., 2024,20:2840-2869. doi: 10.3762/bjoc.20.240

    4. [4]

      WANG Y Z, YU Y P, LIAO H L, ZHOU Y C, MCCULLOCH I, YUE W. The chemistry and applications of heteroisoindigo units as enabling links for semiconducting materials[J]. Acc. Chem. Res., 2020,53(12):2855-2868. doi: 10.1021/acs.accounts.0c00480

    5. [5]

      STALDER R, MEI J, GRAHAM K R, ESTRADA L A, REYNOLDS J R. Isoindigo, a versatile electron-deficient unit for high-performance organic electronics[J]. Chem. Mater., 2014,26(1):664-678. doi: 10.1021/cm402219v

    6. [6]

      WU J J, RAO M, ZHU Y W, WANG P, CHEN M, QU Y J, ZHENG X H, JIANG Y. A NIR-Ⅱ absorbing conjugated polymer based on tetrafused isoindigo with ultrahigh photothermal conversion efficiency for cancer therapy[J]. Chem. Commun., 2024,60(64):8427-8430. doi: 10.1039/D4CC02546F

    7. [7]

      CUNHA C, SEIXAS DE MELO J S. From indigo to isoindigo: Rationalizing the high efficiency of photoprotective molecular mechanisms[J]. Dyes Pigment., 2024,229112307. doi: 10.1016/j.dyepig.2024.112307

    8. [8]

      LEI T, DOU J H, MA Z J, LIU C J, WANG J Y, PEI J. Chlorination as a useful method to modulate conjugated polymers: Balanced and ambient-stable ambipolar high-performance field-effect transistors and inverters based on chlorinated isoindigo polymers[J]. Chem. Sci., 2013,4(6):2447-2452. doi: 10.1039/c3sc50245g

    9. [9]

      ZHOU Y K, ZHANG W F, YU G. Recent structural evolution of lactam- and imide-functionalized polymers applied in organic field-effect transistors and organic solar cells[J]. Chem. Sci., 2021,12(20):6844-6878. doi: 10.1039/D1SC01711J

    10. [10]

      MU Y B, XIONG C X, CUI M H, SUN M X, CHEN X Y, XIAO B, SANG H Q, WANG Z X, LIU H X, LAN Z G, SONG Y, WAN X B. A recyclable dynamic semiconducting polymer consisting of Pauli-paramagnetic diradicaloids promoted and stabilized by catechol-boron coordination[J]. Chem. Sci., 2025,16(3):1364-1373. doi: 10.1039/D4SC06910B

    11. [11]

      HOU B, LI J, YANG X D, ZHANG J W, XIN H S, GE C W, GAO X K. Azulenoisoindigo: A building block for π-functional materials with reversible redox behavior and proton responsiveness[J]. Chin. Chem. Lett., 2022,33(4):2147-2150. doi: 10.1016/j.cclet.2021.08.079

    12. [12]

      LU H, KOBAYASHI N. Optically active porphyrin and phthalocya-nine systems[J]. Chem. Rev., 2016,10(116):6184-6261.

    13. [13]

      MEUNIER I, PANDEY R K, SENGE M O, DOUGHERTY T J, SMITH K M. Benzoporphyrin derivatives: Synthesis, structure and preliminary biological activity[J]. J. Chem. Soc - Perkin Trans. 1, 1994(8):961-969.

    14. [14]

      LU H, MACK J, YANG Y C, SHEN Z. Structural modification strategies for the rational design of red/NIR region BODIPYs[J]. Chem. Soc. Rev., 2014,43(13):4778-4823. doi: 10.1039/C4CS00030G

    15. [15]

      LU H, SHIMIZU S, MACK J, SHEN Z, KOBAYASHI N. Synthesis and spectroscopic properties of fused-ring-expanded azaboradiazaindacenes[J]. Chem.-Asian J., 2011,6(4):1026-1037. doi: 10.1002/asia.201000641

    16. [16]

      DREW H D K, KELLY D B. 113. Dithio-β-isoindigo (dithiodiph-thalimidine) from phthalonitrile. Part Ⅰ. A condensation reaction of o-dinitriles[J]. J. Chem Soc., 1941:625-630.

    17. [17]

      DREW H D K, KELLY D B. 114. Dithio-β-isoindigo. Part Ⅱ. Mechanism of its formation from phthalonitrile. Derivatives[J]. J. Chem Soc., 1941:630-637.

    18. [18]

      ELVIDGE J A, GOLDEN J H. Compounds containing directly linked pyrrole rings. Part Ⅱ. Dialkylimino-β-isoindigos[J]. J. Chem Soc., 1956:4144-4150.

    19. [19]

      YUSUKE U, EIJI N. Dithio-β-isoindigo as a collector for traces of gold, silver, copper, cobalt, zinc, and manganese[J]. Journal of the Chemical Society of Japan, 1966,87:620-621.

    20. [20]

      NEUSTROEVA N R, KULIKOV M A, VOROB'EV Y G, SMIRNOV R P, ZUEVA N I. Reactivity of dithio-β-isoindigo in complexation and aramination reactions[J]. Russ. J. Coord. Chem., 1999,25:279-281.

    21. [21]

      FURUYAMA T, SATO T, KOBAYASHI N. A bottom-up synthesis of antiaromatic expanded phthalocyanines: Pentabenzotriazasmarag-dyrins, i. e. norcorroles of superphthalocyanines[J]. J. Am. Chem. Soc., 2015,137(43):13788-13791. doi: 10.1021/jacs.5b09853

    22. [22]

      ZATSIKHA Y V, SHAMOVA L I, NEMYKIN V N. Environmentally benign route for scalable preparation of 1-imino-3-thioisoindolines-The key building blocks for the synthesis of dithio- and diamino-β-isoindigo derivatives[J]. J. Org. Chem., 2021,86(6):4733-4746. doi: 10.1021/acs.joc.1c00110

    23. [23]

      ZATSIKHA Y V, SHAMOVA L I, HERBERT D E, NEMYKIN V N. β-Isoindigo-azaDIPYs: Fully conjugated hybrid systems with broad absorption in the visible region[J]. Angew. Chem.-Int. Edit., 2021,60(22):12304-12307. doi: 10.1002/anie.202100888

    24. [24]

      LIU H, LU H, XU J, LIU Z P, LI Z F, MACK J, SHEN Z. Boronpyridyl-imino-isoindoline dyes: Facile synthesis and photophysical properties[J]. Chem Commun., 2014,50(9):1074-1076. doi: 10.1039/C3CC48316A

    25. [25]

      LIU H, LU H, ZHOU Z K, SHIMIZU S, LI Z F, KOBAYASHI N, SHEN Z. Asymmetric core-expanded aza-BODIPY analogues: Facile synthesis and optical properties[J]. Chem. Commun., 2015,51(9):1713-1716. doi: 10.1039/C4CC06704E

    26. [26]

      LIU H, LU H, WU F, LI Z F, KOBAYASHI N, SHEN Z. Synthesis and spectroscopic properties of novel meso-cyano boron-pyridyl-isoindoline dyes[J]. Org. Biomol. Chem., 2014,12(41):8223-8229. doi: 10.1039/C4OB01077A

    27. [27]

      LIU H, WU Y P, LI Z F, LU H. Aza boron-pyridyl-isoindoline isomers: Synthesis and photophysical properties[J]. J. Porphyr. Phthalocyanines, 2014,18(8/9):679-685.

    28. [28]

      WANG X Q, LIU H T, CUI J C, WU Y P, LU H, LU J, LIU Z P, HE W J. Synthesis and fluorescence properties of isoindoline-benzazole-based boron difluoride complexes[J]. New J. Chem., 2014,38(3):1277-1283. doi: 10.1039/c3nj01361h

    29. [29]

      WU Y P, LU H, WANG S S, LI Z F, SHEN Z. Asymmetric boron-complexes containing keto-isoindolinyl and pyridyl groups: Solvatochromic fluorescence, efficient solid-state emission and DFT calculations[J]. J. Mater. Chem. C, 2015,3(47):12281-12289. doi: 10.1039/C5TC03084F

    30. [30]

      WU Y P, WANG S S, LI Z F, SHEN Z, LU H. Chiral binaphthyl-linked BODIPY analogues: Synthesis and spectroscopic properties[J]. J. Mater. Chem. C, 2016,4(21):4668-4674. doi: 10.1039/C6TC00975A

    31. [31]

      ZHANG H, WU Y P, FAN M, XIAO X, MACK J, KUBHEKA G, NYOKONG T, LU H. Aza boron-pyridyl-isoindoline analogues: Synthesis and photophysical properties[J]. New J. Chem., 2017,41(13):5802-5807. doi: 10.1039/C7NJ00707H

    32. [32]

      XIAO Y, HUANG X Y, FENG J, NI Z G, GAI L Z, XIAO X Q, SUI X B, LU H. A simple route toward triplet-forming thionated BODIPY-based photosensitizers[J]. Dyes Pigment., 2022,200110167. doi: 10.1016/j.dyepig.2022.110167

    33. [33]

      GAI L Z, ZHANG R J, SHI X G, NI Z G, WANG S S, ZHANG J L, LU H, GUO Z J. BOINPYs: Facile synthesis and photothermal properties triggered by photoinduced nonadiabatic decay[J]. Chem. Sci., 2023,14(6):1434-1442. doi: 10.1039/D2SC06435A

    34. [34]

      XU Y Q, NI Z G, XIAO Y, CHEN Z W, WANG S S, GAI L Z, ZHENG Y X, SHEN Z, LU H, GUO Z J. Helical β-isoindigo-based chromophores with B—O—B bridge: Facile synthesis and tunable near-infrared circularly polarized luminescence[J]. Angew. Chem.-Int. Edit., 2023,62(8)e202218023. doi: 10.1002/anie.202218023

    35. [35]

      SHENG W L, LV F, TANG B, HAO E H, JIAO L J. Toward the most versatile fluorophore: Direct functionalization of BODIPY dyes via regioselective C—H bond activation[J]. Chin. Chem. Lett., 2019,30(10):1825-1833. doi: 10.1016/j.cclet.2019.08.004

    36. [36]

      LOUDET A, BURGESS K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties[J]. Chem. Rev., 2007,107(11):4891-4932. doi: 10.1021/cr078381n

    37. [37]

      XU N, ZHANG G D, XUE Z Y, WANG M M, SU Y, FANG H, YU Z H, LIU H K, LU H, SU Z. NIR photoactivated electron intersystem crossing to evoke calcium-mediated lysosome-dependent cell death and immunotherapy[J]. Chem. Eng. J., 2024,497155022. doi: 10.1016/j.cej.2024.155022

    38. [38]

      WU S M, ZHANG W Z, LI C R, NI Z G, CHEN W F, GAI L Z, TIAN J W, GUO Z J, LU H. Rational design of CT-coupled J-aggregation platform based on Aza-BODIPY for highly efficient phototherapy[J]. Chem. Sci., 2024,15(16):5973-5979. doi: 10.1039/D3SC06976A

    39. [39]

      WANG S S, GAI L Z, CHEN Y C, JI X B, LU H, GUO Z J. Mitochondria-targeted BODIPY dyes for small molecule recognition, bio-imaging and photodynamic therapy[J]. Chem. Soc. Rev., 2024,53(8):3976-4019.

    40. [40]

      WANG S S, BI X, ZHU H, JI X B, LU H, SHEN Z. Rational design of aggregation-induced emission-active bisboron complexes (BOQHYs) for high-fidelity lipid droplet imaging[J]. Aggregate, 2025,6(2)e670.

    41. [41]

      CHANG L, ZHOU S J, KONG X D, GAI L Z, LU H. 3-/3, 5-Styryl-substituted BODIPY with N-bridged annulation: Synthesis and spectroscopic properties[J]. Synthesis, 2024,56(11):1735-1740.

    42. [42]

      ALBRETT A M, CONRADIE J, BOYD P D W, CLARK G R, GHOSH A, BROTHERS P J. Corrole as a binucleating ligand: Preparation, molecular structure and density functional theory study of diboron corroles[J]. J. Am. Chem. Soc., 2008,130(10):2888-2889.

    43. [43]

      WANG S S, WANG Z L, SONG W T, GAO H, WU F, ZHAO Y, CHAN K S, SHEN Z. B—O—B bridged BOPPY derivatives: Synthesis, structures, and acid-catalyzed cis-trans isomeric interconversion[J]. Dalton Trans., 2022,51(7):2708-2714.

    44. [44]

      YU C Y, XU Y Q, BI X, NI Z G, XIAO H P, HU X G, LU H. Periphery engineering to enhance the chiroptical response of β-isoindigo-based aza-BODIPY analogs[J]. Tetrahedron Lett., 2023,133154833.

    45. [45]

      CHEN Z W, NI Z G, CHEN X Y, XU Y Q, YU C Y, WANG S S, WANG X Y, LU H. Helicene-type β-isoindigo-based boron-dipyrromethene analogs with strong near-infrared chiroptical activity[J]. Aggregate, 2024,5(3)e498.

    46. [46]

      GONG Z L, ZHU X F, ZHOU Z H, ZHANG S W, YANG D, ZHAO B, ZHANG Y P, DENG J P, CHENG Y X, ZHENG Y X, ZANG S Q, KUANG H, DUAN P F, YUAN M J, CHEN C F, ZHAO Y S, ZHONG Y W, TANG B Z, LIU M H. Frontiers in circularly polarized luminescence: Molecular design, self-assembly, nanomaterials, and applications[J]. Sci. China Chem., 2021,64(12):2060-2104.

    47. [47]

      WAN L, ZHANG R, CHO E, LI H, COROPCEANU V, BRÉDAS J L, GAO F. Sensitive near-infrared circularly polarized light detection via non-fullerene acceptor blends[J]. Nat. Photonics, 2023,17(8):649-655.

    48. [48]

      WILLIS O G, ZINNA F, DI BARI L. NIR-circularly polarized luminescence from chiral complexes of lanthanides and d-metals[J]. Angew. Chem.-Int. Edit., 2023,62(25)e202302358.

    49. [49]

      WANG Q, XU H R, QI Z, MEI J, TIAN H, QU D H. Dynamic near-infrared circularly polarized luminescence encoded by transient supramolecular chiral assemblies[J]. Angew. Chem.-Int. Edit., 2024,63(32)e202407385.

    50. [50]

      LIANG N, CAO C, XIE Z L, LIU J X, FENG Y S, YAO C J. Advances in near-infrared circularly polarized luminescence with organometallic and small organic molecules[J]. Mater. Today, 2024,75:309-333.

    51. [51]

      ARRICO L, DI BARI L, ZINNA F. Quantifying the overall efficiency of circularly polarized emitters[J]. Chem.-Eur. J., 2021,27(9):2920-2934.

    52. [52]

      ZINNA F, ARRICO L, DI BARI L. Near-infrared circularly polarized luminescence from chiral Yb (Ⅲ)-diketonatesb[J]. Chem. Commun., 2019,55(46):6607-6609.

    53. [53]

      MUKTHAR N F M, SCHLEY N D, UNG G. Strong circularly polarized luminescence at 1550 nm from enantiopure molecular erbium complexes[J]. J. Am. Chem. Soc., 2022,144(14):6148-6153.

    54. [54]

      JIMéNEZ J R, DOISTAU B, CRUZ C M, BESNARD C, CUERVA J M, CAMPAÑA A G, PIGUET C. Chiral molecular ruby [Cr(dqp)2]3+ with long-lived circularly polarized luminescence[J]. J. Am. Chem. Soc., 2019,141(33):13244-13252.

    55. [55]

      VÁZQUEZ DOMÍNGUEZ P, JOURNAUD O, VANTHUYNE N, JACQUEMIN D, FAVEREAU L, CRASSOUS J, ROS A. Helical donor-acceptor platinum complexes displaying dual luminescence and near-infrared circularly polarized luminescence[J]. Dalton Trans., 2021,50(38):13220-13226.

    56. [56]

      LI J K, CHEN X Y, GUO Y L, WANG X C, SUE A C H, CAO X Y, WANG X Y. B, N-embedded double hetero[7]helicenes with strong chiroptical responses in the visible light region[J]. J. Am. Chem. Soc., 2021,143(43):17958-17963.

    57. [57]

      HUO G F, XU W T, HU J, HAN Y, FAN W, WANG W, SUN Z, YANG H B, WU J. Perylene-embedded helical nanographenes with emission up to 1010 nm: Synthesis, structures, and chiroptical properties[J]. Angew. Chem.-Int. Edit., 2025,64(4)e202416707.

    58. [58]

      MAHLMEISTER B, MAHL M, REICHELT H, SHOYAMA K, STOLTE M, WÜRTHNER F. Helically twisted nanoribbons based on emissive near-infrared responsive quaterrylene bisimides[J]. J. Am. Chem. Soc., 2022,144(23):10507-10514.

    59. [59]

      BOSSON J, LABRADOR G M, BESNARD C, JACQUEMIN D, LACOUR J. Chiral near-infrared fluorophores by self-promoted oxidative coupling of cationic helicenes with amines/enamines[J]. Angew. Chem.-Int. Edit., 2021,60(16):8733-8738.

    60. [60]

      LI Y W, MIAO Z W, SHANG Z W, CAI Y, CHENG J J, XU X Q. A visible-and NIR-light responsive photothermal therapy agent by chirality-dependent MoO3-x nanoparticles[J]. Adv. Func. Mater., 2020,30(4)1906311.

    61. [61]

      GUAN T Y, LIU Y, LI J Y, CHEN M M, SHANG X Y, HU P, LI R F, GAO H, TU D T, ZHENG W, CHEN X Y. Near-infrared-triggered chirality-dependent photodynamic therapy based on hybrid upconversion nanoparticle hydrogels[J]. Chem. Eng. J., 2023,474145429.

    62. [62]

      HAO C L, WANG G Y, CHEN C, XU J, XU C L, KUANG H, XU L G. Circularly polarized light-enabled chiral nanomaterials: From fabrication to application[J]. Nano-Micro Lett., 2023,15(1)39.

    63. [63]

      LI X Z, ZHAO X, WANG X Y, XIONG A X, WANG Z C, SHI Z L, ZHANG J Y, WANG H L, WEI W, HE C, MA J J, GUO Z J, DUAN C Y, ZHAO J, WANG X X. Programmable modular assembly of homochiral Ⅰ(Ⅲ) -metallohelices to reverse metallodrug resistance by inhibiting CDK1[J]. Angew. Chem. -Int. Edit., 2025,64(7)e202419292.

  • 加载中
    1. [1]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    2. [2]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    5. [5]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    6. [6]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    7. [7]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    8. [8]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    9. [9]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    10. [10]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    11. [11]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    12. [12]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    15. [15]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    16. [16]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    17. [17]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    18. [18]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    19. [19]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    20. [20]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

Metrics
  • PDF Downloads(0)
  • Abstract views(243)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return