Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons
- Corresponding author: Sisi WANG, 20223034@hznu.edu.cn Hua LU, hualu@hznu.edu.cn
Citation:
Xian BI, Sisi WANG, Jinyue ZHANG, Yujia PENG, Zhen SHEN, Hua LU. Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(6): 1049-1057.
doi:
10.11862/CJIC.20240456
HUANG C Y, HECHT S. A blueprint for transforming indigos to photoresponsive molecular tools[J]. Chem. - Eur. J., 2023,29(43)e202300981. doi: 10.1002/chem.202300981
KAPLAN G, SEFEROĞLU Z, BERDNIKOVA D V. Photochromic derivatives of indigo: Historical overview of development, challenges and applications[J]. Beilstein J. Org. Chem., 2024,20:228-242. doi: 10.3762/bjoc.20.23
LANGER P. N-Glycosides of indigo, indirubin, and isoindigo: Blue, red, and yellow sugars and their cancerostatic activity[J]. Beilstein J. Org. Chem., 2024,20:2840-2869. doi: 10.3762/bjoc.20.240
WANG Y Z, YU Y P, LIAO H L, ZHOU Y C, MCCULLOCH I, YUE W. The chemistry and applications of heteroisoindigo units as enabling links for semiconducting materials[J]. Acc. Chem. Res., 2020,53(12):2855-2868. doi: 10.1021/acs.accounts.0c00480
STALDER R, MEI J, GRAHAM K R, ESTRADA L A, REYNOLDS J R. Isoindigo, a versatile electron-deficient unit for high-performance organic electronics[J]. Chem. Mater., 2014,26(1):664-678. doi: 10.1021/cm402219v
WU J J, RAO M, ZHU Y W, WANG P, CHEN M, QU Y J, ZHENG X H, JIANG Y. A NIR-Ⅱ absorbing conjugated polymer based on tetrafused isoindigo with ultrahigh photothermal conversion efficiency for cancer therapy[J]. Chem. Commun., 2024,60(64):8427-8430. doi: 10.1039/D4CC02546F
CUNHA C, SEIXAS DE MELO J S. From indigo to isoindigo: Rationalizing the high efficiency of photoprotective molecular mechanisms[J]. Dyes Pigment., 2024,229112307. doi: 10.1016/j.dyepig.2024.112307
LEI T, DOU J H, MA Z J, LIU C J, WANG J Y, PEI J. Chlorination as a useful method to modulate conjugated polymers: Balanced and ambient-stable ambipolar high-performance field-effect transistors and inverters based on chlorinated isoindigo polymers[J]. Chem. Sci., 2013,4(6):2447-2452. doi: 10.1039/c3sc50245g
ZHOU Y K, ZHANG W F, YU G. Recent structural evolution of lactam- and imide-functionalized polymers applied in organic field-effect transistors and organic solar cells[J]. Chem. Sci., 2021,12(20):6844-6878. doi: 10.1039/D1SC01711J
MU Y B, XIONG C X, CUI M H, SUN M X, CHEN X Y, XIAO B, SANG H Q, WANG Z X, LIU H X, LAN Z G, SONG Y, WAN X B. A recyclable dynamic semiconducting polymer consisting of Pauli-paramagnetic diradicaloids promoted and stabilized by catechol-boron coordination[J]. Chem. Sci., 2025,16(3):1364-1373. doi: 10.1039/D4SC06910B
HOU B, LI J, YANG X D, ZHANG J W, XIN H S, GE C W, GAO X K. Azulenoisoindigo: A building block for π-functional materials with reversible redox behavior and proton responsiveness[J]. Chin. Chem. Lett., 2022,33(4):2147-2150. doi: 10.1016/j.cclet.2021.08.079
LU H, KOBAYASHI N. Optically active porphyrin and phthalocya-nine systems[J]. Chem. Rev., 2016,10(116):6184-6261.
MEUNIER I, PANDEY R K, SENGE M O, DOUGHERTY T J, SMITH K M. Benzoporphyrin derivatives: Synthesis, structure and preliminary biological activity[J]. J. Chem. Soc - Perkin Trans. 1, 1994(8):961-969.
LU H, MACK J, YANG Y C, SHEN Z. Structural modification strategies for the rational design of red/NIR region BODIPYs[J]. Chem. Soc. Rev., 2014,43(13):4778-4823. doi: 10.1039/C4CS00030G
LU H, SHIMIZU S, MACK J, SHEN Z, KOBAYASHI N. Synthesis and spectroscopic properties of fused-ring-expanded azaboradiazaindacenes[J]. Chem.-Asian J., 2011,6(4):1026-1037. doi: 10.1002/asia.201000641
DREW H D K, KELLY D B. 113. Dithio-β-isoindigo (dithiodiph-thalimidine) from phthalonitrile. Part Ⅰ. A condensation reaction of o-dinitriles[J]. J. Chem Soc., 1941:625-630.
DREW H D K, KELLY D B. 114. Dithio-β-isoindigo. Part Ⅱ. Mechanism of its formation from phthalonitrile. Derivatives[J]. J. Chem Soc., 1941:630-637.
ELVIDGE J A, GOLDEN J H. Compounds containing directly linked pyrrole rings. Part Ⅱ. Dialkylimino-β-isoindigos[J]. J. Chem Soc., 1956:4144-4150.
YUSUKE U, EIJI N. Dithio-β-isoindigo as a collector for traces of gold, silver, copper, cobalt, zinc, and manganese[J]. Journal of the Chemical Society of Japan, 1966,87:620-621.
NEUSTROEVA N R, KULIKOV M A, VOROB'EV Y G, SMIRNOV R P, ZUEVA N I. Reactivity of dithio-β-isoindigo in complexation and aramination reactions[J]. Russ. J. Coord. Chem., 1999,25:279-281.
FURUYAMA T, SATO T, KOBAYASHI N. A bottom-up synthesis of antiaromatic expanded phthalocyanines: Pentabenzotriazasmarag-dyrins, i. e. norcorroles of superphthalocyanines[J]. J. Am. Chem. Soc., 2015,137(43):13788-13791. doi: 10.1021/jacs.5b09853
ZATSIKHA Y V, SHAMOVA L I, NEMYKIN V N. Environmentally benign route for scalable preparation of 1-imino-3-thioisoindolines-The key building blocks for the synthesis of dithio- and diamino-β-isoindigo derivatives[J]. J. Org. Chem., 2021,86(6):4733-4746. doi: 10.1021/acs.joc.1c00110
ZATSIKHA Y V, SHAMOVA L I, HERBERT D E, NEMYKIN V N. β-Isoindigo-azaDIPYs: Fully conjugated hybrid systems with broad absorption in the visible region[J]. Angew. Chem.-Int. Edit., 2021,60(22):12304-12307. doi: 10.1002/anie.202100888
LIU H, LU H, XU J, LIU Z P, LI Z F, MACK J, SHEN Z. Boronpyridyl-imino-isoindoline dyes: Facile synthesis and photophysical properties[J]. Chem Commun., 2014,50(9):1074-1076. doi: 10.1039/C3CC48316A
LIU H, LU H, ZHOU Z K, SHIMIZU S, LI Z F, KOBAYASHI N, SHEN Z. Asymmetric core-expanded aza-BODIPY analogues: Facile synthesis and optical properties[J]. Chem. Commun., 2015,51(9):1713-1716. doi: 10.1039/C4CC06704E
LIU H, LU H, WU F, LI Z F, KOBAYASHI N, SHEN Z. Synthesis and spectroscopic properties of novel meso-cyano boron-pyridyl-isoindoline dyes[J]. Org. Biomol. Chem., 2014,12(41):8223-8229. doi: 10.1039/C4OB01077A
LIU H, WU Y P, LI Z F, LU H. Aza boron-pyridyl-isoindoline isomers: Synthesis and photophysical properties[J]. J. Porphyr. Phthalocyanines, 2014,18(8/9):679-685.
WANG X Q, LIU H T, CUI J C, WU Y P, LU H, LU J, LIU Z P, HE W J. Synthesis and fluorescence properties of isoindoline-benzazole-based boron difluoride complexes[J]. New J. Chem., 2014,38(3):1277-1283. doi: 10.1039/c3nj01361h
WU Y P, LU H, WANG S S, LI Z F, SHEN Z. Asymmetric boron-complexes containing keto-isoindolinyl and pyridyl groups: Solvatochromic fluorescence, efficient solid-state emission and DFT calculations[J]. J. Mater. Chem. C, 2015,3(47):12281-12289. doi: 10.1039/C5TC03084F
WU Y P, WANG S S, LI Z F, SHEN Z, LU H. Chiral binaphthyl-linked BODIPY analogues: Synthesis and spectroscopic properties[J]. J. Mater. Chem. C, 2016,4(21):4668-4674. doi: 10.1039/C6TC00975A
ZHANG H, WU Y P, FAN M, XIAO X, MACK J, KUBHEKA G, NYOKONG T, LU H. Aza boron-pyridyl-isoindoline analogues: Synthesis and photophysical properties[J]. New J. Chem., 2017,41(13):5802-5807. doi: 10.1039/C7NJ00707H
XIAO Y, HUANG X Y, FENG J, NI Z G, GAI L Z, XIAO X Q, SUI X B, LU H. A simple route toward triplet-forming thionated BODIPY-based photosensitizers[J]. Dyes Pigment., 2022,200110167. doi: 10.1016/j.dyepig.2022.110167
GAI L Z, ZHANG R J, SHI X G, NI Z G, WANG S S, ZHANG J L, LU H, GUO Z J. BOINPYs: Facile synthesis and photothermal properties triggered by photoinduced nonadiabatic decay[J]. Chem. Sci., 2023,14(6):1434-1442. doi: 10.1039/D2SC06435A
XU Y Q, NI Z G, XIAO Y, CHEN Z W, WANG S S, GAI L Z, ZHENG Y X, SHEN Z, LU H, GUO Z J. Helical β-isoindigo-based chromophores with B—O—B bridge: Facile synthesis and tunable near-infrared circularly polarized luminescence[J]. Angew. Chem.-Int. Edit., 2023,62(8)e202218023. doi: 10.1002/anie.202218023
SHENG W L, LV F, TANG B, HAO E H, JIAO L J. Toward the most versatile fluorophore: Direct functionalization of BODIPY dyes via regioselective C—H bond activation[J]. Chin. Chem. Lett., 2019,30(10):1825-1833. doi: 10.1016/j.cclet.2019.08.004
LOUDET A, BURGESS K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties[J]. Chem. Rev., 2007,107(11):4891-4932. doi: 10.1021/cr078381n
XU N, ZHANG G D, XUE Z Y, WANG M M, SU Y, FANG H, YU Z H, LIU H K, LU H, SU Z. NIR photoactivated electron intersystem crossing to evoke calcium-mediated lysosome-dependent cell death and immunotherapy[J]. Chem. Eng. J., 2024,497155022. doi: 10.1016/j.cej.2024.155022
WU S M, ZHANG W Z, LI C R, NI Z G, CHEN W F, GAI L Z, TIAN J W, GUO Z J, LU H. Rational design of CT-coupled J-aggregation platform based on Aza-BODIPY for highly efficient phototherapy[J]. Chem. Sci., 2024,15(16):5973-5979. doi: 10.1039/D3SC06976A
WANG S S, GAI L Z, CHEN Y C, JI X B, LU H, GUO Z J. Mitochondria-targeted BODIPY dyes for small molecule recognition, bio-imaging and photodynamic therapy[J]. Chem. Soc. Rev., 2024,53(8):3976-4019.
WANG S S, BI X, ZHU H, JI X B, LU H, SHEN Z. Rational design of aggregation-induced emission-active bisboron complexes (BOQHYs) for high-fidelity lipid droplet imaging[J]. Aggregate, 2025,6(2)e670.
CHANG L, ZHOU S J, KONG X D, GAI L Z, LU H. 3-/3, 5-Styryl-substituted BODIPY with N-bridged annulation: Synthesis and spectroscopic properties[J]. Synthesis, 2024,56(11):1735-1740.
ALBRETT A M, CONRADIE J, BOYD P D W, CLARK G R, GHOSH A, BROTHERS P J. Corrole as a binucleating ligand: Preparation, molecular structure and density functional theory study of diboron corroles[J]. J. Am. Chem. Soc., 2008,130(10):2888-2889.
WANG S S, WANG Z L, SONG W T, GAO H, WU F, ZHAO Y, CHAN K S, SHEN Z. B—O—B bridged BOPPY derivatives: Synthesis, structures, and acid-catalyzed cis-trans isomeric interconversion[J]. Dalton Trans., 2022,51(7):2708-2714.
YU C Y, XU Y Q, BI X, NI Z G, XIAO H P, HU X G, LU H. Periphery engineering to enhance the chiroptical response of β-isoindigo-based aza-BODIPY analogs[J]. Tetrahedron Lett., 2023,133154833.
CHEN Z W, NI Z G, CHEN X Y, XU Y Q, YU C Y, WANG S S, WANG X Y, LU H. Helicene-type β-isoindigo-based boron-dipyrromethene analogs with strong near-infrared chiroptical activity[J]. Aggregate, 2024,5(3)e498.
GONG Z L, ZHU X F, ZHOU Z H, ZHANG S W, YANG D, ZHAO B, ZHANG Y P, DENG J P, CHENG Y X, ZHENG Y X, ZANG S Q, KUANG H, DUAN P F, YUAN M J, CHEN C F, ZHAO Y S, ZHONG Y W, TANG B Z, LIU M H. Frontiers in circularly polarized luminescence: Molecular design, self-assembly, nanomaterials, and applications[J]. Sci. China Chem., 2021,64(12):2060-2104.
WAN L, ZHANG R, CHO E, LI H, COROPCEANU V, BRÉDAS J L, GAO F. Sensitive near-infrared circularly polarized light detection via non-fullerene acceptor blends[J]. Nat. Photonics, 2023,17(8):649-655.
WILLIS O G, ZINNA F, DI BARI L. NIR-circularly polarized luminescence from chiral complexes of lanthanides and d-metals[J]. Angew. Chem.-Int. Edit., 2023,62(25)e202302358.
WANG Q, XU H R, QI Z, MEI J, TIAN H, QU D H. Dynamic near-infrared circularly polarized luminescence encoded by transient supramolecular chiral assemblies[J]. Angew. Chem.-Int. Edit., 2024,63(32)e202407385.
LIANG N, CAO C, XIE Z L, LIU J X, FENG Y S, YAO C J. Advances in near-infrared circularly polarized luminescence with organometallic and small organic molecules[J]. Mater. Today, 2024,75:309-333.
ARRICO L, DI BARI L, ZINNA F. Quantifying the overall efficiency of circularly polarized emitters[J]. Chem.-Eur. J., 2021,27(9):2920-2934.
ZINNA F, ARRICO L, DI BARI L. Near-infrared circularly polarized luminescence from chiral Yb (Ⅲ)-diketonatesb[J]. Chem. Commun., 2019,55(46):6607-6609.
MUKTHAR N F M, SCHLEY N D, UNG G. Strong circularly polarized luminescence at 1550 nm from enantiopure molecular erbium complexes[J]. J. Am. Chem. Soc., 2022,144(14):6148-6153.
JIMéNEZ J R, DOISTAU B, CRUZ C M, BESNARD C, CUERVA J M, CAMPAÑA A G, PIGUET C. Chiral molecular ruby [Cr(dqp)2]3+ with long-lived circularly polarized luminescence[J]. J. Am. Chem. Soc., 2019,141(33):13244-13252.
VÁZQUEZ DOMÍNGUEZ P, JOURNAUD O, VANTHUYNE N, JACQUEMIN D, FAVEREAU L, CRASSOUS J, ROS A. Helical donor-acceptor platinum complexes displaying dual luminescence and near-infrared circularly polarized luminescence[J]. Dalton Trans., 2021,50(38):13220-13226.
LI J K, CHEN X Y, GUO Y L, WANG X C, SUE A C H, CAO X Y, WANG X Y. B, N-embedded double hetero[7]helicenes with strong chiroptical responses in the visible light region[J]. J. Am. Chem. Soc., 2021,143(43):17958-17963.
HUO G F, XU W T, HU J, HAN Y, FAN W, WANG W, SUN Z, YANG H B, WU J. Perylene-embedded helical nanographenes with emission up to 1010 nm: Synthesis, structures, and chiroptical properties[J]. Angew. Chem.-Int. Edit., 2025,64(4)e202416707.
MAHLMEISTER B, MAHL M, REICHELT H, SHOYAMA K, STOLTE M, WÜRTHNER F. Helically twisted nanoribbons based on emissive near-infrared responsive quaterrylene bisimides[J]. J. Am. Chem. Soc., 2022,144(23):10507-10514.
BOSSON J, LABRADOR G M, BESNARD C, JACQUEMIN D, LACOUR J. Chiral near-infrared fluorophores by self-promoted oxidative coupling of cationic helicenes with amines/enamines[J]. Angew. Chem.-Int. Edit., 2021,60(16):8733-8738.
LI Y W, MIAO Z W, SHANG Z W, CAI Y, CHENG J J, XU X Q. A visible-and NIR-light responsive photothermal therapy agent by chirality-dependent MoO3-x nanoparticles[J]. Adv. Func. Mater., 2020,30(4)1906311.
GUAN T Y, LIU Y, LI J Y, CHEN M M, SHANG X Y, HU P, LI R F, GAO H, TU D T, ZHENG W, CHEN X Y. Near-infrared-triggered chirality-dependent photodynamic therapy based on hybrid upconversion nanoparticle hydrogels[J]. Chem. Eng. J., 2023,474145429.
HAO C L, WANG G Y, CHEN C, XU J, XU C L, KUANG H, XU L G. Circularly polarized light-enabled chiral nanomaterials: From fabrication to application[J]. Nano-Micro Lett., 2023,15(1)39.
LI X Z, ZHAO X, WANG X Y, XIONG A X, WANG Z C, SHI Z L, ZHANG J Y, WANG H L, WEI W, HE C, MA J J, GUO Z J, DUAN C Y, ZHAO J, WANG X X. Programmable modular assembly of homochiral Ⅰ(Ⅲ) -metallohelices to reverse metallodrug resistance by inhibiting CDK1[J]. Angew. Chem. -Int. Edit., 2025,64(7)e202419292.
Wenkai Chen , Yunjia Shen , Xiangmeng Kong , Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018
YanYuan Jia , Rong Rong , Jie Liu , Jing Guo , GuoYu Jiang , Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
Qin Li , Kexin Yang , Qinglin Yang , Xiangjin Zhu , Xiaole Han , Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Borong Yu , Huijiao Zhang , Xinyu Zhang , Xiaoying Li , Shuming Chen , Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107
Zishuo Yi , Peng Liu , Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
Yanting HUANG , Hua XIANG , Mei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196
Hongxia Yan , Rui Wu , Weixu Feng , Yan Zhao , Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010
Cheng Zheng , Shiying Zheng , Yanping Zhang , Shoutian Zheng , Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107