Citation: Kai PENG, Xinyi ZHAO, Zixi CHEN, Xuhai ZHANG, Yuqiao ZENG, Jianqing JIANG. Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454 shu

Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis

Figures(8)

  • Water splitting is suffering from low energy transformation efficiency due to the slow kinetics of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), posing a significant barrier to the broad application of green hydrogen. Developing catalysts with excellent catalytic performance and low cost is crucial for overcoming the energy transformation issue. Recently, high-entropy materials have attracted considerable attention in various fields owing to their superior physical and chemical properties. High mixing entropy not only introduces significant lattice distortion in metals and ceramics but also provides them with sluggish diffusion and "cocktail effects", enabling the development of novel catalysts with outstanding catalytic performance. High-entropy materials thereby become one of the ideal catalysts for water splitting to lower the energy consumption on both the HER and OER electrodes. This article reviews the recent development of high-entropy alloys (HEAs) and high-entropy ceramics (HECs) in the field of water splitting. We first introduce the composition and structure design strategies for HEA and HEC catalysts based on the mechanism of water splitting, and then summarize the main HEA and HEC systems that display improved catalytic performance towards HER and OER. The synthesis methods for HEA and HEC catalysts are also introduced, and their advantages and disadvantages are evaluated. Finally, we provide an outlook on the challenges and prospects of the future development and application of HEAs and HECs for water splitting.
  • 加载中
    1. [1]

      AMIN M, SHAH H H, FAREED A G, KHAN W U, CHUNG E, ZIA A, RAHMAN FAROOQI Z U, LEE C. Hydrogen production through renewable and non-renewable energy processes and their impact on climate change[J]. Int. J. Hydrog. Energy, 2022, 47(77): 33112-33134  doi: 10.1016/j.ijhydene.2022.07.172

    2. [2]

      YU Z Y, DUAN Y, FENG X Y, YU X X, GAO M R, YU S H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects[J]. Adv. Mater., 2021, 33(31): 2007100  doi: 10.1002/adma.202007100

    3. [3]

      KOTHARI R, BUDDHI D, SAWHNEY R L. Comparison of environmental and economic aspects of various hydrogen production methods[J]. Renew. Sust. Energ. Rev., 2008, 12(2): 553-563  doi: 10.1016/j.rser.2006.07.012

    4. [4]

      DINCER I. Green methods for hydrogen production[J]. Int. J. Hydrog. Energy, 2012, 37(2): 1954-1971  doi: 10.1016/j.ijhydene.2011.03.173

    5. [5]

      HASSAN N S, JALIL A A, RAJENDRAN S, KHUSNUN N F, BAHARI M B, JOHARI A, KAMARUDDIN M J, ISMAIL M. Recent review and evaluation of green hydrogen production via water electrolysis for a sustainable and clean energy society[J]. Int. J. Hydrog. Energy, 2024, 52: 420-441  doi: 10.1016/j.ijhydene.2023.09.068

    6. [6]

      THOMAS J G N. Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals[J]. Trans. Faraday Soc., 1961, 57: 1603-1611  doi: 10.1039/tf9615701603

    7. [7]

      DAMJANOVIC A, DEY A, BOCKRIS J O M. Kinetics of oxygen evolution and dissolution on platinum electrodes[J]. Electrochim. Acta, 1966, 11(7): 791-814  doi: 10.1016/0013-4686(66)87056-1

    8. [8]

      HANSEN J N, PRATS H, TOUDAHL K K, MØRCH SECHER N, CHAN K, KIBSGAARD J, CHORKENDORFF I. Is there anything better than Pt for HER?[J]. ACS Energy Lett., 2021, 6(4): 1175-1180  doi: 10.1021/acsenergylett.1c00246

    9. [9]

      OVER H. Fundamental studies of planar single-crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting[J]. ACS Catal., 2021, 11(14): 8848-8871  doi: 10.1021/acscatal.1c01973

    10. [10]

      JIAO S L, FU X W, WANG S Y, ZHAO Y. Perfecting electrocatalysts via imperfections: Towards the large-scale deployment of water electrolysis technology[J]. Energy Environ. Sci., 2021, 14(4): 1722-1770  doi: 10.1039/D0EE03635H

    11. [11]

      YEH J W, CHEN S K, LIN S J, GAN J Y, CHIN T S, SHUN T T, TSAU C H, CHANG S Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6(5): 299-303  doi: 10.1002/adem.200300567

    12. [12]

      CANTOR B, CHANG I T H, KNIGHT P, VINCENT A J B. Microstructural development in equiatomic multicomponent alloys[J]. Mater. Sci. Eng. A‒Struct. Mater. Prop. Microstruct. Process., 2004, 375/376/377: 213-218

    13. [13]

      TIAN F Y, VARGA L K, CHEN N X, SHEN J, VITOS L. Empirical design of single phase high-entropy alloys with high hardness[J]. Intermetallics, 2015, 58: 1-6  doi: 10.1016/j.intermet.2014.10.010

    14. [14]

      VAIDYA M, GURUVIDYATHRI K, MURTY B S. Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys[J]. J. Alloy. Compd., 2019, 774: 856-864  doi: 10.1016/j.jallcom.2018.09.342

    15. [15]

      LI R, LIU X J, LIU W H, LI Z B, CHAN K C, LU Z P. Design of hierarchical porosity via manipulating chemical and microstructural complexities in high-entropy alloys for efficient water electrolysis[J]. Adv. Sci., 2022, 9(12): 2105808  doi: 10.1002/advs.202105808

    16. [16]

      ROST C M, SACHET E, BORMAN T, MOBALLEGH A, DICKEY E C, HOU D, JONES J L, CURTAROLO S, MARIA J P. Entropy-stabilized oxides[J]. Nat. Commun., 2015, 6(1): 8485  doi: 10.1038/ncomms9485

    17. [17]

      ZHOU N X, JIANG S C, HUANG T, QIN M D, HU T, LUO J. Single-phase high-entropy intermetallic compounds (HEICs): Bridging high-entropy alloys and ceramics[J]. Sci. Bull., 2019, 64(12): 856-864  doi: 10.1016/j.scib.2019.05.007

    18. [18]

      OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nat. Rev. Mater., 2020, 5(4): 295-309  doi: 10.1038/s41578-019-0170-8

    19. [19]

      AKRAMI S, EDALATI P, FUJI M, EDALATI K. High-entropy ceramics: Review of principles, production and applications[J]. Mater. Sci. Eng. R‒Rep., 2021, 146: 100644  doi: 10.1016/j.mser.2021.100644

    20. [20]

      XIANG H M, XING Y, DAI F Z, WANG H J, SU L, MIAO L, ZHANG G L, WANG Y G, QI X W, YAO L, WANG H L, ZHAO B, LI J Q, ZHOU Y C. High-entropy ceramics: Present status, challenges, and a look forward[J]. J. Adv. Ceram., 2021, 10(3): 385-441  doi: 10.1007/s40145-021-0477-y

    21. [21]

      BOCKRIS J O M, AMMAR I A, HUQ A K M S. The mechanism of the hydrogen evolution reaction on platinum, silver and tungsten surfaces in acid solutions[J]. J. Phys. Chem. A, 1957, 61(7): 879-886  doi: 10.1021/j150553a008

    22. [22]

      DE CHIALVO M R G, CHIALVO A C. Hydrogen evolution reaction: Analysis of the Volmer-Heyrovsky-Tafel mechanism with a generalized adsorption model[J]. J. Electroanal. Chem., 1994, 372(1): 209-223

    23. [23]

      ĎUROVIČ M, HNáT J, BOUZEK K. Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. a comparative review[J]. J. Power Sources, 2021, 493: 229708  doi: 10.1016/j.jpowsour.2021.229708

    24. [24]

      EID K, OZOEMENA K I, VARMA R S. Unravelling the structure-activity relationship of porous binary metal-based electrocatalysts for green hydrogen evolution reaction[J]. Coord. Chem. Rev., 2025, 523: 216238  doi: 10.1016/j.ccr.2024.216238

    25. [25]

      ZERADJANIN A R, POLYMEROS G, TOPARLI C, LEDENDECKER M, HODNIK N, ERBE A, ROHWERDER M, LA MANTIA F. What is the trigger for the hydrogen evolution reaction? ‒Towards electrocatalysis beyond the Sabatier principle[J]. Phys. Chem. Chem. Phys., 2020, 22(16): 8768-8780  doi: 10.1039/D0CP01108H

    26. [26]

      KUO D Y, PAIK H, KLOPPENBURG J, FAETH B, SHEN K M, SCHLOM D G, HAUTIER G, SUNTIVICH J. Measurements of oxygen electroadsorption energies and oxygen evolution reaction on RuO2(110): A discussion of the Sabatier principle and its role in electrocatalysis[J]. J. Am. Chem. Soc., 2018, 140(50): 17597-17605  doi: 10.1021/jacs.8b09657

    27. [27]

      NØRSKOV J K, BLIGAARD T, LOGADOTTIR A, KITCHIN J R, CHEN J G, PANDELOV S, STIMMING U. Trends in the exchange current for hydrogen evolution[J]. J. Electrochem. Soc., 2005, 152(3): J23  doi: 10.1149/1.1856988

    28. [28]

      MAN I C, SU H Y, CALLE-VALLEJO F, HANSEN H A, MARTÍNEZ J I, INOGLU N G, KITCHIN J, JARAMILLO T F, NØRSKOV J K, ROSSMEISL J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165  doi: 10.1002/cctc.201000397

    29. [29]

      KOPER M T M. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis[J]. Chem. Sci., 2013, 4(7): 2710-2723  doi: 10.1039/c3sc50205h

    30. [30]

      CHEN X H, ASCHAFFENBURG D J, CUK T J. Selecting between two transition states by which water oxidation intermediates decay on an oxide surface[J]. Nat. Catal., 2019, 2(9): 820-827  doi: 10.1038/s41929-019-0332-5

    31. [31]

      MUELLER D N, MACHALA M L, BLUHM H, CHUEH W C. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions[J]. Nat. Commun., 2015, 6(1): 6097  doi: 10.1038/ncomms7097

    32. [32]

      MONTOYA J H, SEITZ L C, CHAKTHRANONT P, VOJVODIC A, JARAMILLO T F, NØRSKOV J K. Materials for solar fuels and chemicals[J]. Nat. Mater., 2017, 16(1): 70-81  doi: 10.1038/nmat4778

    33. [33]

      SEH Z W, KIBSGAARD J, DICKENS C F, CHORKENDORFF I, NØRSKOV J K, JARAMILLO T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998  doi: 10.1126/science.aad4998

    34. [34]

      RONG X, PAROLIN J, KOLPAK A M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution[J]. ACS Catal., 2016, 6(2): 1153-1158  doi: 10.1021/acscatal.5b02432

    35. [35]

      LU M, ZHENG Y, HU Y, HUANG B L, JI D G, SUN M Z, LI J Y, PENG Y, SI R, XI P X, YAN C H. Artificially steering electrocatalytic oxygen evolution reaction mechanism by regulating oxygen defect contents in perovskites[J]. Sci. Adv., 2022, 8(30): eabq3563  doi: 10.1126/sciadv.abq3563

    36. [36]

      REN X R, ZHAI Y Y, YANG N, WANG B L, LIU S Z. Lattice oxygen redox mechanisms in the alkaline oxygen evolution reaction[J]. Adv. Funct. Mater., 2024, 34(32): 2401610  doi: 10.1002/adfm.202401610

    37. [37]

      WU J W, WANG H C, LIU N Y, JIA B B, ZHENG J L. High-entropy materials in electrocatalysis: Understanding, design, and development[J]. Small, 2024, 20(43): 2403162  doi: 10.1002/smll.202403162

    38. [38]

      KIM H K, JANG H, JIN X, KIM M G, HWANG S J. A crucial role of enhanced Volmer-Tafel mechanism in improving the electrocatalytic activity via synergetic optimization of host, interlayer, and surface features of 2D nanosheets[J]. Appl. Catal. B‒Environ., 2022, 312: 121391  doi: 10.1016/j.apcatb.2022.121391

    39. [39]

      JIANG T L, ZHANG Z W, WEI S Y, TAN S X, LIU H X, CHEN W. Rechargeable hydrogen gas batteries: Fundamentals, principles, materials, and applications[J]. Adv. Mater., 2024, 37(1): 2412108

    40. [40]

      WANG H, ZHAI T T, WU Y F, ZHOU T, ZHOU B B, SHANG C X, GUO Z X. High-valence oxides for high performance oxygen evolution electrocatalysis[J]. Adv. Sci., 2023, 10(22): 2301706  doi: 10.1002/advs.202301706

    41. [41]

      NOOR T, YAQOOB L, IQBAL N. Recent advances in electrocatalysis of oxygen evolution reaction using noble-metal, transition-metal, and carbon-based materials[J]. ChemElectroChem, 2021, 8(3): 447-483  doi: 10.1002/celc.202001441

    42. [42]

      ARALEKALLU S, SANNEGOWDA LOKESH K, SINGH V. Advanced bifunctional catalysts for energy production by electrolysis of earth-abundant water[J]. Fuel, 2024, 357: 129753  doi: 10.1016/j.fuel.2023.129753

    43. [43]

      QIN Y C, WANG F Q, WANG X M, WANG M W, ZHANG W L, AN W K, WANG X P, REN Y L, ZHENG X, LV D C, AHMAD A. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion[J]. Rare Metals, 2021, 40(9): 2354-2368  doi: 10.1007/s12598-021-01727-y

    44. [44]

      HUANG X F, YANG G X, LI S, WANG H J, CAO Y H, PENG F, YU H. Noble-metal-based high-entropy-alloy nanoparticles for electrocatalysis[J]. J. Energy Chem., 2022, 68: 721-751  doi: 10.1016/j.jechem.2021.12.026

    45. [45]

      FENG G, NING F H, SONG J, SHANG H F, ZHANG K, DING Z P, GAO P, CHU W S, XIA D G. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution[J]. J. Am. Chem. Soc., 2021, 143(41): 17117-17127  doi: 10.1021/jacs.1c07643

    46. [46]

      FU X B, ZHANG J H, ZHAN S Q, XIA F J, WANG C G, MA D S, YUE Q, WU J S, KANG Y J. High-entropy alloy nanosheets for fine-tuning hydrogen evolution[J]. ACS Catal., 2022, 12(19): 11955-11959  doi: 10.1021/acscatal.2c02778

    47. [47]

      LIU H, QIN H Y, KANG J L, MA L Y, CHEN G X, HUANG Q, ZHANG Z J, LIU E Z, LU H M, LI J X, ZHAO N Q. A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting[J]. Chem. Eng. J., 2022, 435: 134898  doi: 10.1016/j.cej.2022.134898

    48. [48]

      WANG C Y, ZHAO S, HAN G Q, BIAN H W, ZHAO X R, WANG L N, XIE G W. Hierarchical porous nonprecious high-entropy alloys for ultralow overpotential in hydrogen evolution reaction[J]. Small Methods, 2024, 8(10): 2301691

    49. [49]

      YAO R Q, ZHOU Y T, SHI H, WAN W B, ZHANG Q H, GU L, ZHU Y F, WEN Z, LANG X Y, JIANG Q. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction[J]. Adv. Funct. Mater., 2021, 31(10): 2009613  doi: 10.1002/adfm.202009613

    50. [50]

      FENG D Y, DONG Y B, NIE P, ZHANG L, QIAO Z A. CoNiCuMgZn high entropy alloy nanoparticles embedded onto graphene sheets via anchoring and alloying strategy as efficient electrocatalysts for hydrogen evolution reaction[J]. Chem. Eng. J., 2022, 430: 132883  doi: 10.1016/j.cej.2021.132883

    51. [51]

      SHI H, SUN X Y, ZENG S P, LIU Y, HAN G F, WANG T H, WEN Z, FANG Q R, LANG X Y, JIANG Q. Nanoporous nonprecious high-entropy alloys as multisite electrocatalysts for ampere-level current-density hydrogen evolution[J]. Small Struct., 2023, 4(9): 2300042  doi: 10.1002/sstr.202300042

    52. [52]

      MAULANA A L, CHEN P C, SHI Z, YANG Y, LIZANDARA-PUEYO C, SEELER F, ABRUÑA H D, MULLER D, SCHIERLE-ARNDT K, YANG P D. Understanding the structural evolution of IrFeCoNiCu high-entropy alloy nanoparticles under the acidic oxygen evolution reaction[J]. Nano Lett., 2023, 23(14): 6637-6644  doi: 10.1021/acs.nanolett.3c01831

    53. [53]

      ZHU H, ZHU Z F, HAO J C, SUN S H, LU S L, WANG C, MA P M, DONG W F, DU M L. High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution[J]. Chem. Eng. J., 2022, 431: 133251  doi: 10.1016/j.cej.2021.133251

    54. [54]

      CHANG S Q, CHENG C C, CHENG P Y, HUANG C L, LU S Y. Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting[J]. Chem. Eng. J., 2022, 446: 137452  doi: 10.1016/j.cej.2022.137452

    55. [55]

      YI L Y, XIAO S M, WEI Y P, LI D Z, WANG R F, GUO S F, HU W H. Free-standing high-entropy alloy plate for efficient water oxidation catalysis: Structure/composition evolution and implication of high-valence metals[J]. Chem. Eng. J., 2023, 469: 144015  doi: 10.1016/j.cej.2023.144015

    56. [56]

      MEI Y J, FENG Y B, ZHANG C X, ZHANG Y, QI Q L, HU J. High-entropy alloy with Mo-coordination as efficient electrocatalyst for oxygen evolution reaction[J]. ACS Catal., 2022, 12(17): 10808-10817  doi: 10.1021/acscatal.2c02604

    57. [57]

      XIAO L Y, WANG Z L, GUAN J Q. Optimization strategies of high-entropy alloys for electrocatalytic applications[J]. Chem. Sci., 2023, 14(45): 12850-12868  doi: 10.1039/D3SC04962K

    58. [58]

      HUANG K, ZHANG B W, WU J S, ZHANG T Y, PENG D D, CAO X, ZHANG Z, LI Z, HUANG Y Z. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst[J]. J. Mater. Chem. A, 2020, 8(24): 11938-11947  doi: 10.1039/D0TA02125C

    59. [59]

      WEI H H, WANG Q, ZHANG Y, LI J, LIU P, WANG N N, GONG X Q. Engineering high-entropy alloy nanosheets toward efficient electrocatalytic water oxidation[J]. Fuel, 2024, 358: 130011  doi: 10.1016/j.fuel.2023.130011

    60. [60]

      WU Q N, WANG Y N, ZHANG K X, XIE Z B, SUN K, AN W, LIANG X, ZOU X X. Advances and status of anode catalysts for proton exchange membrane water electrolysis technology[J]. Mat. Chem. Front., 2023, 7(6): 1025-1045  doi: 10.1039/D3QM00010A

    61. [61]

      DOMALANTA M R, BAMBA J N, MATIENZO D J D, DEL ROSARIO-PARAGGUA J A, OCON J. Pathways towards achieving high current density water electrolysis: From material perspective to system configuration[J]. ChemSusChem, 2023, 16(13): e202300310  doi: 10.1002/cssc.202300310

    62. [62]

      XU H G, ZHANG X Y, DING Y, FU H Q, WANG R, MAO F, LIU P F, YANG H G. Rational design of hydrogen evolution reaction electrocatalysts for commercial alkaline water electrolysis[J]. Small Struct., 2023, 4(8): 2200404  doi: 10.1002/sstr.202200404

    63. [63]

      SUN H N, XU X M, KIM H, JUNG W, ZHOU W, SHAO Z P. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications[J]. Energy Environ. Mater., 2023, 6(5): e12441  doi: 10.1002/eem2.12441

    64. [64]

      LI P, WAN X H, SU J H, LIU W, GUO Y Z, YIN H Y, WANG D H. A single-phase FeCoNiMnMo high-entropy alloy oxygen evolution anode working in alkaline solution for over 1 000 h[J]. ACS Catal., 2022, 12(19): 11667-11674  doi: 10.1021/acscatal.2c02946

    65. [65]

      CUI Y F, JIANG S D, FU Q, WANG R, XU P, SUI Y, WANG X J, NING Z L, SUN J F, SUN X, NIKIFOROV A, SONG B. Cost-effective high entropy core-shell fiber for stable oxygen evolution reaction at 2 A cm-2[J]. Adv. Funct. Mater., 2023, 33(50): 2306889  doi: 10.1002/adfm.202306889

    66. [66]

      CUI P, WANG T H, ZHANG X H, WANG X Y, WU H, WU Y K, BA C Y, ZENG Y Q, LIU P, JIANG J Q. Rapid formation of epitaxial oxygen evolution reaction catalysts on dendrites with high catalytic activity and stability[J]. ACS Nano, 2023, 17(22): 22268-22276  doi: 10.1021/acsnano.3c02662

    67. [67]

      CUI P, WANG T H, ZHANG X H, BA C Y, WU Y K, PENG K, ZENG Y Q, JIANG J Q. NiCoCuP foam with a 3D hierarchical porous structure as all-pH efficient and stable HER electrocatalyst[J]. Int. J. Hydrog. Energy, 2023, 48(44): 16725-16732  doi: 10.1016/j.ijhydene.2023.01.100

    68. [68]

      LI Y Y, ZHANG Q W, ZHAO X R, WU H F, WANG X Y, ZENG Y Q, CHEN Q, CHEN M W, LIU P. Vapor phase dealloying derived nanoporous Co@CoO/RuO2 composites for efficient and durable oxygen evolution reaction[J]. Adv. Funct. Mater., 2023, 33(17): 2214124  doi: 10.1002/adfm.202214124

    69. [69]

      ZHANG X H, CAO C T, LING T, YE C, LU J, SHAN J Q. Developing practical catalysts for high-current-density water electrolysis[J]. Adv. Energy Mater., 2024, 14(45): 2402633  doi: 10.1002/aenm.202402633

    70. [70]

      ZHANG H M, ZHANG S F, ZUO L H, LI J K, GUO J X, WANG P, SUN J F, DAI L. Recent advances of high-entropy electrocatalysts for water electrolysis by electrodeposition technology: A short review[J]. Rare Metals, 2024, 43(6): 2371-2390  doi: 10.1007/s12598-024-02619-7

    71. [71]

      SCHWEIDLER S, BOTROS M, STRAUSS F, WANG Q S, MA Y J, VELASCO L, CADILHA MARQUES G, SARKAR A, KÜBEL C, HAHN H, AGHASSI-HAGMANN J, BREZESINSKI T, BREITUNG B. High-entropy materials for energy and electronic applications[J]. Nat. Rev. Mater., 2024, 9(4): 266-281  doi: 10.1038/s41578-024-00654-5

    72. [72]

      KANTE M V, WEBER M L, NI S, VAN DEN BOSCH I C G, VAN DER MINNE E, HEYMANN L, FALLING L J, GAUQUELIN N, TSVETANOVA M, CUNHA D M, KOSTER G, GUNKEL F, NEMŠÁK S, HAHN H, VELASCO ESTRADA L, BAEUMER C. A high-entropy oxide as high-activity electrocatalyst for water oxidation[J]. ACS Nano, 2023, 17(6): 5329-5339  doi: 10.1021/acsnano.2c08096

    73. [73]

      KARTHIKEYAN S C, RAMAKRISHNAN S, PRABHAKARAN S, SUBRAMANIAM M R, MAMLOUK M, KIM D H, YOO D J. Low-cost self-reconstructed high entropy oxide as an ultra-durable OER electrocatalyst for anion exchange membrane water electrolyzer[J]. Small, 2024, 20(45): 2402241  doi: 10.1002/smll.202402241

    74. [74]

      SAIRAM K V R S, AZIZ S K T, KARAJAGI I, SAINI A, PAL M, GHOSH P C, DUTTA A. A quinary high entropy metal oxide exhibiting robust and efficient bidirectional O2 reduction and water oxidation[J]. Int. J. Hydrog. Energy, 2023, 48(28): 10521-10531  doi: 10.1016/j.ijhydene.2022.12.034

    75. [75]

      DING S, SUN Y T, LOU F Q, YU L C, XIA B K, DUAN J J, ZHANG Y Z, CHEN S. Plasma-regulated two-dimensional high entropy oxide arrays for synergistic hydrogen evolution: From theoretical prediction to electrocatalytic applications[J]. J. Power Sources, 2022, 520: 230873  doi: 10.1016/j.jpowsour.2021.230873

    76. [76]

      NGUYEN T X, LIAO Y C, LIN C C, SU Y H, TING J M. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction[J]. Adv. Funct. Mater., 2021, 31(27): 2101632  doi: 10.1002/adfm.202101632

    77. [77]

      LIU D, GUO P F, YAN X X, HE Y F, WU R B. Manipulating the configuration entropy of layered hydroxides toward efficient oxygen evolution reaction for anion exchange membrane electrolyzer[J]. Mater. Today, 2024, 80: 101-112  doi: 10.1016/j.mattod.2024.08.008

    78. [78]

      ZHANG L J, CAI W W, BAO N Z, YANG H. Implanting an electron donor to enlarge the d-p hybridization of high-entropy (oxy)hydroxide: A novel design to boost oxygen evolution[J]. Adv. Mater., 2022, 34(26): 2110511  doi: 10.1002/adma.202110511

    79. [79]

      LIU D, YAN X X, GUO P F, YANG Y X, HE Y F, LIU J, CHEN J, PAN H G, WU R B. Inert Mg incorporation to break the activity/stability relationship in high-entropy layered hydroxides for the electrocatalytic oxygen evolution Reaction[J]. ACS Catal., 2023, 13(11): 7698-7706  doi: 10.1021/acscatal.3c00786

    80. [80]

      WANG F Q, ZOU P C, ZHANG Y T, PAN W L, LI Y, LIANG L M, CHEN C, LIU H, ZHENG S. Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation[J]. Nat. Commun., 2023, 14(1): 6019  doi: 10.1038/s41467-023-41706-8

    81. [81]

      ZHAO X H, XUE Z M, CHEN W J, WANG Y Q, MU T C. Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting[J]. ChemSusChem, 2020, 13(8): 2038-2042  doi: 10.1002/cssc.202000173

    82. [82]

      WANG Z, LI J Z, YUAN S, YANG J S, JIN Z Q, TAN X J, DANG J, MU W Z, LI G J, WANG Q. Sabatier principle based design of high performance FeCoNiMnMoP high entropy electrocatalysis for alkaline water splitting[J]. Chem. Eng. J., 2024, 497: 154650  doi: 10.1016/j.cej.2024.154650

    83. [83]

      WANG Z C, ZHANG X Y, WU X K, PAN Y, LI H D, HAN Y, XU G R, CHI J Q, LAI J P, WANG L. High-entropy phosphate/C hybrid nanosheets for efficient acidic hydrogen evolution reaction[J]. Chem. Eng. J., 2022, 437: 135375  doi: 10.1016/j.cej.2022.135375

    84. [84]

      LAI D W, KANG Q L, GAO F, LU Q. High-entropy effect of a metal phosphide on enhanced overall water splitting performance[J]. J. Mater. Chem. A, 2021, 9(33): 17913-17922  doi: 10.1039/D1TA04755H

    85. [85]

      WU L F, HOFMANN J P. High-entropy transition metal chalcogenides as electrocatalysts for renewable energy conversion[J]. Curr. Opin. Electrochem., 2022, 34: 101010  doi: 10.1016/j.coelec.2022.101010

    86. [86]

      MOHILI R, HEMANTH N R, JIN H, LEE K, CHAUDHARI N. Emerging high entropy metal sulphides and phosphides for electrochemical water splitting[J]. J. Mater. Chem. A, 2023, 11(20): 10463-10472  doi: 10.1039/D2TA10081A

    87. [87]

      LEI Y T, ZHANG L L, XU W J, XIONG C L, CHEN W X, XIANG X, ZHANG B, SHANG H S. Carbon-supported high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays promise high-performance overall water splitting[J]. Nano Res., 2022, 15(7): 6054-6061  doi: 10.1007/s12274-022-4304-8

    88. [88]

      NGUYEN T X, SU Y H, LIN C C, TING J M. Self-reconstruction of sulfate-containing high entropy sulfide for exceptionally high-Performance oxygen evolution reaction electrocatalyst[J]. Adv. Funct. Mater., 2021, 31(48): 2106229  doi: 10.1002/adfm.202106229

    89. [89]

      HAUSMANN J N, MENEZES P W. Why should transition metal chalcogenides be investigated as water splitting precatalysts even though they transform into (oxyhydr)oxides?[J]. Curr. Opin. Electrochem., 2022, 34: 100991  doi: 10.1016/j.coelec.2022.100991

    90. [90]

      JIANG Z Q, YUAN Y, TAN L, LI M J, PENG K. Self-reconstruction of (CoNiFeCuCr)Se high-entropy selenide for efficient oxygen evolution reaction[J]. Appl. Surf. Sci., 2023, 627: 157282  doi: 10.1016/j.apsusc.2023.157282

    91. [91]

      WANG T, CHEN H, YANG Z Z, LIANG J Y, DAI S. High-entropy perovskite fluorides: A new platform for oxygen evolution catalysis[J]. J. Am. Chem. Soc., 2020, 142(10): 4550-4554  doi: 10.1021/jacs.9b12377

    92. [92]

      NIU S Y, YANG Z W, QI F G, HAN Y, SHI Z Z, QIU Q W, HAN X P, WANG Y, DU X W. Electrical discharge induced bulk-to-nanoparticle transformation: Nano high-entropy carbide as catalysts for hydrogen evolution reaction[J]. Adv. Funct. Mater., 2022, 32(35): 2203787  doi: 10.1002/adfm.202203787

    93. [93]

      DONG S Z, LI Q J, HU H Y, ZHANG X, LI Y S, YE K, HOU W J, HE J Q, ZHAO H W. Application of rare-earth high entropy boride in electrocatalytic hydrogen evolution reaction[J]. Appl. Surf. Sci., 2023, 615: 156413  doi: 10.1016/j.apsusc.2023.156413

    94. [94]

      WU Q F, WANG Z J, ZHENG T, CHEN D, YANG Z S, LI J J, KAI J J, WANG J C. A casting eutectic high entropy alloy with superior strength-ductility combination[J]. Mater. Lett., 2019, 253: 268-271  doi: 10.1016/j.matlet.2019.06.067

    95. [95]

      GUO W M, LIU B, LIU Y, LI T C, FU A, FANG Q H, NIE Y. Microstructures and mechanical properties of ductile NbTaTiV refractory high entropy alloy prepared by powder metallurgy[J]. J. Alloy. Compd., 2019, 776: 428-436  doi: 10.1016/j.jallcom.2018.10.230

    96. [96]

      KANG Y Q, CRETU O, KIKKAWA J, KIMOTO K, NARA H, NUGRAHA A S, KAWAMOTO H, EGUCHI M, LIAO T, SUN Z Q, ASAHI T, YAMAUCHI Y. Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites[J]. Nat. Commun., 2023, 14(1): 4182  doi: 10.1038/s41467-023-39157-2

    97. [97]

      WANG D D, LIU Z J, DU S Q, ZHANG Y Q, LI H, XIAO Z H, CHEN W, CHEN R, WANG Y Y, ZOU Y Q, WANG S Y. Low-temperature synthesis of small-sized high-entropy oxides for water oxidation[J]. J. Mater. Chem. A, 2019, 7(42): 24211-24216  doi: 10.1039/C9TA08740K

    98. [98]

      GU K Z, ZHU X Y, WANG D D, ZHANG N N, HUANG G, LI W, LONG P, TIAN J, ZOU Y Q, WANG Y Y, CHEN R, WANG S Y. Ultrathin defective high-entropy layered double hydroxides for electrochemical water oxidation[J]. J. Energy Chem., 2021, 60: 121-126  doi: 10.1016/j.jechem.2020.12.029

    99. [99]

      CARNÉ-SÁNCHEZ A, IMAZ I, CANO-SARABIA M, MASPOCH D. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures[J]. Nat. Chem., 2013, 5(3): 203-211  doi: 10.1038/nchem.1569

    100. [100]

      ZHU Y J, CHOI S H, FAN X L, SHIN J, MA Z H, ZACHARIAH M R, CHOI J W, WANG C S. Recent progress on spray pyrolysis for high performance electrode materials in lithium and sodium rechargeable batteries[J]. Adv. Energy Mater., 2017, 7(7): 1601578  doi: 10.1002/aenm.201601578

    101. [101]

      DAI Y F, JU J, LUO L L, JIANG H, HU Y J, LI C Z. Flame spray pyrolysis synthesis of ultra-small high-entropy alloy-supported oxide nanoparticles for CO2 hydrogenation catalysts[J]. Small Methods, 2024, 8(10): 2301768

    102. [102]

      BRANDT T G, TUOKKOLA A R, YU M, LAINE R M. Liquid-feed flame spray pyrolysis enabled synthesis of Co- and Cr-free, high-entropy spinel oxides as Li-ion anodes[J]. Chem. Eng. J., 2023, 474: 145495  doi: 10.1016/j.cej.2023.145495

    103. [103]

      ZHENG H N, ZHANG Y R, XU Z, ZHOU G Z, ZHAO X T, HUANG Z, LIN H. One-step synthesis of Pt@(CrMnFeCoNi)3O4 high entropy oxide catalysts through flame spray pyrolysis[J]. J. Energy Inst., 2024, 117: 101804  doi: 10.1016/j.joei.2024.101804

    104. [104]

      ZHAO P C, CAO Q G, YI W, HAO X D, LI J, ZHANG B S, HUANG L, HUANG Y J, JIANG Y B, XU B S, SHAN Z W, CHEN J L. Facile and general method to synthesize Pt-based high-entropy-alloy nanoparticles[J]. ACS Nano, 2022, 16(9): 14017-14028  doi: 10.1021/acsnano.2c03818

    105. [105]

      PAVITHRA C L P, JANARDHANA R K S K, REDDY K M, MURAPAKA C, JOARDAR J, SARADA B V, TAMBOLI R R, HU Y, ZHANG Y, WANG X, DEY S R. An advancement in the synthesis of unique soft magnetic CoCuFeNiZn high entropy alloy thin films[J]. Sci. Rep., 2021, 11(1): 8836  doi: 10.1038/s41598-021-87786-8

    106. [106]

      RITTER T G, PHAKATKAR A H, RASUL M G, SARAY M T, SOROKINA L V, SHOKUHFAR T, GONÇALVES J M, SHAHBAZIAN-YASSAR R. Electrochemical synthesis of high entropy hydroxides and oxides boosted by hydrogen evolution reaction[J]. Cell Rep. Phys. Sci., 2022, 3(4): 100847  doi: 10.1016/j.xcrp.2022.100847

    107. [107]

      PAVITHRA C L P, JANARDHANA R K S K, REDDY K M, MURAPAKA C, WANG X D, DEY S R. One-dimensional Co-Cu-Fe-Ni-Zn high-entropy alloy nanostructures[J]. Mater. Res. Lett., 2021, 9(7): 285-290  doi: 10.1080/21663831.2021.1896588

    108. [108]

      ZHANG X L, ZHANG W B, YIN Y, THEINT M M, GUO S B, CHAI S S, ZHOU X, MA X J. Sol-gel method preparation and high-rate energy storage of high-entropy ceramic (FeCoCrMnNi)C porous powder[J]. Ceram. Int., 2023, 49(17, Part B): 29327-29338  doi: 10.1016/j.ceramint.2023.06.228

    109. [109]

      WANG G, QIN J, FENG Y Y, FENG B X, YANG S J, WANG Z, ZHAO Y X, WEI J. Sol-gel synthesis of spherical mesoporous high-entropy oxides[J]. ACS Appl. Mater. Interfaces, 2020, 12(40): 45155-45164  doi: 10.1021/acsami.0c11899

    110. [110]

      MUSHIANA T, KHAN M, ABDULLAH M I, ZHANG N, MA M M. Facile sol-gel preparation of high-entropy multielemental electrocatalysts for efficient oxidation of methanol and urea[J]. Nano Res., 2022, 15(6): 5014-5023  doi: 10.1007/s12274-022-4186-9

    111. [111]

      NIU B, ZHANG F, PING H, LI N, ZHOU J Y, LEI L W, XIE J J, ZHANG J Y, WANG W M, FU Z Y. Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys[J]. Sci. Rep., 2017, 7(1): 3421  doi: 10.1038/s41598-017-03644-6

    112. [112]

      HUSSAIN A, ZHENG Y H, WANG Q Y, CUI Y B. Synthesis of high-entropy oxides derived from metal-organic frameworks and their catalytic performance for total toluene oxidation[J]. New J. Chem., 2024, 48(39): 17237-17245  doi: 10.1039/D4NJ02650K

    113. [113]

      SIVANANTHAM A, LEE H, HWANG S W, AHN B, CHO I S. Preparation, electrical and electrochemical characterizations of CuCoNiFeMn high-entropy-alloy for overall water splitting at neutral-pH[J]. J. Mater. Chem. A, 2021, 9(31): 16841-16851  doi: 10.1039/D1TA02621F

    114. [114]

      ZHANG Y, LU T, YE Y K, DAI W J, ZHU Y A, PAN Y. Stabilizing oxygen vacancy in entropy-engineered CoFe2O4-type catalysts for co-prosperity of efficiency and stability in an oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2020, 12(29): 32548-32555  doi: 10.1021/acsami.0c05916

    115. [115]

      YU Y X, XU J L, ZHANG L W, MA Y C, LUO J M. Electrochemically treated AlCoCrFeNi high entropy alloy as a self-supporting electrode for overall water splitting[J]. Int. J. Hydrog. Energy, 2024, 72: 209-219  doi: 10.1016/j.ijhydene.2024.05.350

    116. [116]

      YAO Y G, HUANG Z N, XIE P F, LACEY S D, JACOB R J, XIE H, CHEN F J, NIE A, PU T, REHWOLDT M, YU D, ZACHARIAH M R, WANG C, SHAHBAZIAN-YASSAR R, LI J, HU L B. Carbothermal shock synthesis of high-entropy-alloy nanoparticles[J]. Science, 2018, 359(6383): 1489-1494  doi: 10.1126/science.aan5412

    117. [117]

      CUI X Y, LIU Y C, WANG X Y, TIAN X L, WANG Y X, ZHANG G, LIU T, DING J, HU W B, CHEN Y N. Rapid high-temperature liquid shock synthesis of high-entropy alloys for hydrogen evolution reaction[J]. ACS Nano, 2024, 18(4): 2948-2957  doi: 10.1021/acsnano.3c07703

    118. [118]

      GLASSCOTT M W, PENDERGAST A D, GOINES S, BISHOP A R, HOANG A T, RENAULT C, DICK J E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis[J]. Nat. Commun., 2019, 10(1): 2650  doi: 10.1038/s41467-019-10303-z

    119. [119]

      GAO S J, HAO S Y, HUANG Z N, YUAN Y F, HAN S, LEI L C, ZHANG X W, SHAHBAZIAN-YASSAR R, LU J. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis[J]. Nat. Commun., 2020, 11(1): 2016  doi: 10.1038/s41467-020-15934-1

    120. [120]

      LAW Z X, TSAI D H. Design of aerosol nanoparticles for interfacial catalysis[J]. Langmuir, 2022, 38(30): 9037-9042  doi: 10.1021/acs.langmuir.2c01155

    121. [121]

      YANG Y, ROMANO M, FENG G J, WANG X Z, WU T, HOLDREN S, ZACHARIAH M R. Growth of sub-5 nm metal nanoclusters in polymer melt aerosol droplets[J]. Langmuir, 2018, 34(2): 585-594  doi: 10.1021/acs.langmuir.7b02900

    122. [122]

      KOBAYASHI Y, TEAH H Y, YOKOYAMA S, SHOJI R, HANADA N. A molten salt synthesis method of the high-entropy alloy CrMnFeCoNi for high catalytic performance and low life cycle GHG emissions[J]. ACS Sustain. Chem. Eng., 2022, 10(46): 15046-15057  doi: 10.1021/acssuschemeng.2c04007

    123. [123]

      YANG Y, SONG B A, KE X, XU F Y, BOZHILOV K N, HU L B, SHAHBAZIAN-YASSAR R, ZACHARIAH M R. Aerosol synthesis of high entropy alloy nanoparticles[J]. Langmuir, 2020, 36(8): 1985-1992  doi: 10.1021/acs.langmuir.9b03392

    124. [124]

      QIAO H Y, WANG X Z, DONG Q, ZHENG H K, CHEN G, HONG M, YANG C P, WU M, HE K, HU L B. A high-entropy phosphate catalyst for oxygen evolution reaction[J]. Nano Energy, 2021, 86: 106029  doi: 10.1016/j.nanoen.2021.106029

    125. [125]

      PAN Y D, GAO J K, LV E J, LI T T, XU H, SUN L, NAIRAN A, ZHANG Q C. Integration of alloy segregation and surface Co-O hybridization in carbon-encapsulated CoNiPt alloy catalyst for superior alkaline hydrogen evolution[J]. Adv. Funct. Mater., 2023, 33(41): 2303833  doi: 10.1002/adfm.202303833

    126. [126]

      CAO J, LI H C, PU J X, ZENG S C, LIU L M, ZHANG L, LUO F H, MA L, ZHOU K C, WEI Q P. Hierarchical NiMo alloy microtubes on nickel foam as an efficient electrocatalyst for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2019, 44(45): 24712-24718  doi: 10.1016/j.ijhydene.2019.07.229

    127. [127]

      DA Y M, JIANG R, TIAN Z L, CHEN G W, XIAO Y K, ZHANG J F, XI S B, DENG Y D, CHEN W, HAN X P, HU W B. Development of a novel Pt3V alloy electrocatalyst for highly efficient and durable industrial hydrogen evolution reaction in acid environment[J]. Adv. Energy Mater., 2023, 13(16): 2300127  doi: 10.1002/aenm.202300127

    128. [128]

      GUO H Y, FANG Z W, LI H, FERNANDEZ D, HENKELMAN G, HUMPHREY S M, YU G H. Rational design of rhodium-iridium alloy nanoparticles as highly active catalysts for acidic oxygen evolution[J]. ACS Nano, 2019, 13(11): 13225-13234  doi: 10.1021/acsnano.9b06244

    129. [129]

      LI L M, WANG Y, NAZMUTDINOV R R, ZAIROV R R, SHAO Q, LU J M. Magnetic field enhanced cobalt iridium alloy catalyst for acidic oxygen evolution reaction[J]. Nano Lett., 2024, 24(20): 6148-6157  doi: 10.1021/acs.nanolett.4c01623

    130. [130]

      CAI W Z, CHEN R, YANG H B, TAO H B, WANG H Y, GAO J J, LIU W, LIU S, HUNG S F, LIU B. Amorphous versus crystalline in water oxidation catalysis: A case study of NiFe alloy[J]. Nano Lett., 2020, 20(6): 4278-4285  doi: 10.1021/acs.nanolett.0c00840

    131. [131]

      SHI Y Y, ZHENG D W, ZHANG X, LV K, WANG F H, DONG B B, WANG S Y, YANG C X, LI J M, YANG F Y, HAO L Y, YIN L J, XU X, XIAN Y X, AGATHOPOULOS S. Self-supported ceramic electrode of 1T-2H MoS2 grown on the TiC membrane for hydrogen production[J]. Chem. Mater., 2021, 33(15): 6217-6226  doi: 10.1021/acs.chemmater.1c01965

    132. [132]

      ZHANG T, WU M Y, YAN D Y, MAO J, LIU H, HU W B, DU X W, LING T, QIAO S Z. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution[J]. Nano Energy, 2018, 4: 103-109

    133. [133]

      ZHAO F Z, MAO X Y, ZHENG X, LIU H C, ZHU L Q, LI W P, WANG Z, CHEN H N. Roles of the self-reconstruction layer in the catalytic stability of a NiFeP catalyst during the oxygen evolution reaction[J]. J. Mater. Chem. A, 2023, 11(1): 276-286  doi: 10.1039/D2TA06514B

    134. [134]

      WANG B Q, HAN X, GUO C, JING J, YANG C, LI Y P, HAN A J, WANG D S, LIU J F. Structure inheritance strategy from MOF to edge-enriched NiFe-LDH array for enhanced oxygen evolution reaction[J]. Appl. Catal. B‒Environ., 2021, 298: 120580  doi: 10.1016/j.apcatb.2021.120580

  • 加载中
    1. [1]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    9. [9]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    12. [12]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    13. [13]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    14. [14]

      Minglei Sun Zhong-Yong Yuan . Valorization strategies for electrodegradation of nitrogenous wastes in sewage. Acta Physico-Chimica Sinica, 2025, 41(9): 100108-. doi: 10.1016/j.actphy.2025.100108

    15. [15]

      Ruizhi Duan Xiaomei Wang Panwang Zhou Yang Liu Can Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-. doi: 10.1016/j.actphy.2025.100111

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    19. [19]

      Qingcui Yang Wen Liu Li Cao Chen Tang Bing Xu Jie Zhao . For Entropy Hurts: Life Thrives on Negative Entropy. University Chemistry, 2024, 39(9): 151-156. doi: 10.12461/PKU.DXHX202402029

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(1)
  • Abstract views(17)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return