Citation: Yi ZHANG, Guang LI, Wenxuan FAN, Qingfeng YI. Influence of bismuth trisulfide on the electrochemical performance of iron electrode[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445 shu

Influence of bismuth trisulfide on the electrochemical performance of iron electrode

  • Corresponding author: Qingfeng YI, yqfyy2001@hnust.edu.cn
  • Received Date: 17 December 2024
    Revised Date: 18 April 2025

Figures(8)

  • Iron (Fe) nanoparticles and graphite (Gr) with different masses of bismuth trisulfide (Bi2S3) were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi2S3@Fe-Gr. The hydrogen evolution reaction and iron passivation process on these iron electrodes were investigated in alkaline and neutral solutions. The iron electrode Bi2S3-3@Fe-Gr (The additional amount of Bi2S3 was 3 mg) revealed the strongest ability to inhibit hydrogen evolution among the iron electrodes of the present investigation, while the Bi2S3-6@Fe-Gr electrode (The additional amount of Bi2S3 was 6 mg) delivered significant performance in inhibiting anodic passivation. This is because the high-energy ball milling process leads to the well-dispersion of Bi2S3 and the changes in the surface of Fe nanoparticles, thereby slowing down the passivation of the iron electrode surface.
  • 加载中
    1. [1]

      WANG Y P, YI R W, FAN W X, LI G, YI Q F. Ultra-stable air electrodes based on different carbon materials for zinc-air battery[J]. J. Power Sources, 2024,624235518. doi: 10.1016/j.jpowsour.2024.235518

    2. [2]

      ZHANG W C, FENG B W, HUANG L, LIANG Y H, CHEN J P, LI X Z, SHI Z C, WANG N G. Fe/Cu diatomic sites dispersed on nitrogendoped mesoporous carbon for the boosted oxygen reduction reaction in Mg-air and Zn-air batteries[J]. Appl. Catal. B-Environ., 2024,358124450. doi: 10.1016/j.apcatb.2024.124450

    3. [3]

      FANG C, TANG X M, YI Q F. Adding Fe/dicyandiamide to Co-MOF to greatly improve its ORR/OER bifunctional electrocatalytic activity[J]. Appl. Catal. B-Environ., 2024,341123346. doi: 10.1016/j.apcatb.2023.123346

    4. [4]

      GUO S H, CHEN Y P, SONG Y, WANG W, LI C Q, SHI Z C, WANG N G. Discharge and corrosion behavior of Mg-Al-Sn anodes: An in-depth study of the morphological impact of Mg2Sn phase[J]. J. Power Sources, 2025,628235935. doi: 10.1016/j.jpowsour.2024.235935

    5. [5]

      WANG Y B, CHEN A L, FANG C, YI Q F. Nitrogen/phosphorus/ boron-codoped hollow carbon spheres as highly efficient electrocatalysts for Znair batteries[J]. Ind. Eng. Chem. Res., 2022,61:10969-10981. doi: 10.1021/acs.iecr.2c01350

    6. [6]

      FANG C, YI Q F, CHEN A L, WANG Y B, WANG Y P, LI X F. Fabrication of FeCo/multidimensional carbon-based nanocomposites as excellent cathodic catalysts of Zn-air battery[J]. J. Electrochem. Soc., 2022,169110538. doi: 10.1149/1945-7111/aca2e3

    7. [7]

      WANG Y P, YI R W, LI G, YI Q F, FAN W X. Impact of diffusion layer structure of air electrodes on their performance in neutral zinc/ iron-air batteries[J]. J. Alloy. Compd., 2025,1010177492. doi: 10.1016/j.jallcom.2024.177492

    8. [8]

      CHEN A L, YI Q F, SHENG K, WANG Y B, CHEN J C, ZHANG Q L, TAN G H. Mesoporous N-P codoped carbon nanosheets as superior cathodic catalysts of neutral metal-air batteries[J]. Langmuir, 2021,37(43):12616-12628. doi: 10.1021/acs.langmuir.1c01947

    9. [9]

      HANG B T, THANG D H, KOBAYASHI E. Fe/carbon nanofiber composite materials for Fe-air battery anodes[J]. J. Electroanal. Chem., 2013,704:145-152. doi: 10.1016/j.jelechem.2013.06.018

    10. [10]

      IKEUBA A I, IWUJI P C, NABUK I E, OBONO O E, CHARLIE D, ETIM A A, NWABUEZE B I, AMAJAMA J. Advances on lithium, magnesium, zinc, and iron-air batteries as energy delivery devices-A critical review[J]. J. Solid State Electrochem., 2024,28(9):2999-3025. doi: 10.1007/s10008-024-05866-x

    11. [11]

      WEINRICH H, DURMUS Y E, TEMPEL H, KUNGL H, EICHEL R A. Silicon and iron as resource-efficient anode materials for ambienttemperature metal-air batteries: A review[J]. Materials, 2019,122134. doi: 10.3390/ma12132134

    12. [12]

      WEINRICH H, GEHRING M, TEMPEL H, KUNGL H, EICHEL R A. Electrode thickness-dependent formation of porous iron electrodes for secondary alkaline iron-air batteries[J]. Electrochim. Acta, 2019,314:61-71. doi: 10.1016/j.electacta.2019.05.025

    13. [13]

      TAN W K, ASAMI K, MAEGAWA K, KUMAR R, KAWAMURA G, MUTO H, MATSUDA A. Fe3O4-embedded rGO composites as anode for rechargeable FeOx-air batteries. mater[J]. Today Commun., 2020,25101540.

    14. [14]

      VILLANUEVA-MARTÍNEZ N I, ALEGRE C, RUBÍN J, MCKERRACHER R, DE LEÓN C P, RODRÍGUEZ H A F, LÁZARO M J. Investigation of the properties influencing the deactivation of iron electrodes in ironair batteries[J]. Electrochim. Acta, 2023,465142964. doi: 10.1016/j.electacta.2023.142964

    15. [15]

      LI Y G, LU J. Metalair batteries: Will they be the future electrochemical energy storage device of choice?[J]. ACS Energy Lett., 2017,2(6):1370-1377.

    16. [16]

      YIN Y H, FANG C, YI Q F, LI G. Impact of different carbon conductive agents on performance of iron-air battery[J]. CIESC J., 2024,75(2):685-694.

    17. [17]

      POSADA J O G, HALL P J. Multivariate investigation of parameters in the development and improvement of NiFe cells[J]. J. Power Sources, 2014,262:263-269. doi: 10.1016/j.jpowsour.2014.03.145

    18. [18]

      WANG Y B, YI R W, CHEN A L, FANG C, WANG Y Q, YI Q F, LIU M Y, LIU S J, ZHAN S Q, ZHONG B. Hollow carbon sphere and polyhedral carbon composites supported iron nanoparticles as excellent bifunctional electrocatalysts of Zn-air battery[J]. Energy Technol., 2022,10(5)2200057. doi: 10.1002/ente.202200057

    19. [19]

      FLIS-KABULSKA I, FLIS J, ZAKROCZYMSKI T. Promotion of hydrogen entry into iron from NaOH solution by iron-oxygen species[J]. Electrochim. Acta, 2007,52(24):7158-7165. doi: 10.1016/j.electacta.2007.05.053

    20. [20]

      YANG B, MALKHANDI S, MANOHAR A K, PRAKASH G K S, NARAYANAN S R. Organo-sulfur molecules enable iron-based battery electrodes to meet the challenges of large-scale electrical energy storage[J]. Energy Environ. Sci., 2014,7(8):2753-2763. doi: 10.1039/C4EE01454E

    21. [21]

      FIGUEREDO-RODRÍGUEZ H A, McKERRACHER R D, INSAUSTI M, LUIS A G, DE LEΌN C P, ALEGRE C, BAGLIO V, ARICÒ A S, WALSH F C. A rechargeable, aqueous iron air battery with nanostructured electrodes capable of high energy density operation[J]. J. Electrochem. Soc., 2017,164(6):A1148-A1157. doi: 10.1149/2.0711706jes

    22. [22]

      FANG C, TANG X M, WANG J Y, YI Q F. Performance of iron-air battery with iron nanoparticle-encapsulated C-N composite electrode[J]. Front. Energy, 2024,18(1):42-53. doi: 10.1007/s11708-023-0913-5

    23. [23]

      CASELLATO U, COMISSO N, MENGOLI G. Effect of Li ions on reduction of Fe oxides in aqueous alkaline medium[J]. Electrochim. Acta, 2006,51(26):5669-5681. doi: 10.1016/j.electacta.2006.01.057

    24. [24]

      MALKHANDI S, YANG B, MANOHAR A K, PRAKASH G K S, NARAYANAN S R. Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes[J]. J. Am. Chem. Soc., 2013,135:347-353. doi: 10.1021/ja3095119

    25. [25]

      VIJAYAMOHANAN K, SHUKIA A K, SATHYANARAYANA S. Role of sulphide additives on the performance of alkaline iron electrodes[J]. J. Electroanal. Chem., 1990,289(1):55-68.

    26. [26]

      BALASUBRAMANIAN T S, SHUKLA A K. Effect of metal-sulfide additives on charge/discharge reactions of the alkaline iron electrode[J]. J. Power Sources, 1993,41(1):99-105.

    27. [27]

      MANOHAR A K, YANG C G, NARAYANAN S R. The role of sulfide additives in achieving long cycle life rechargeable iron electrodes in alkaline batteries[J]. J. Electrochem. Soc., 2015,162(9):A1864-A1872. doi: 10.1149/2.0741509jes

    28. [28]

      POSADA J O G, HALL P J. Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions[J]. J. Power Sources, 2014,268:810-815. doi: 10.1016/j.jpowsour.2014.06.126

    29. [29]

      HANG B T, THANG D H. Effect of additives on the electrochemical properties of Fe2O3/C nanocomposite for Fe/air battery anode[J]. J. Electroanal. Chem., 2016,762:59-65. doi: 10.1016/j.jelechem.2015.12.012

    30. [30]

      TIAN B, ŚWIATOWSKA J, MAURICE V, ZANNA S, SEYEUX A, MARCUS P. The effect of Na2S additive in alkaline electrolyte on improved performances of Fe-based air batteries[J]. Electrochim. Acta, 2018,259:196-203. doi: 10.1016/j.electacta.2017.10.136

    31. [31]

      RAJAN A S, SAMPATH S, SHUKLA A K. An in situ carbon-grafted alkaline iron electrode for iron-based accumulators[J]. Energy Environ. Sci., 2014,7(3):1110-1116. doi: 10.1039/c3ee42783h

    32. [32]

      MAJUMDER S, GU M, KIM K H. Facile fabrication of BiVO4/Bi2S3/ NiCoO 2 for significant photoelectrochemical water splitting[J]. Appl. Surf. Sci., 2022,574151562. doi: 10.1016/j.apsusc.2021.151562

    33. [33]

      ČERNY J, MICKA K. Voltammetric study of an iron electrode in alkaline electrolytes[J]. J. Power Sources, 1989,25(2):111-122. doi: 10.1016/0378-7753(89)85003-7

    34. [34]

      HANG B T, DANG T V, QUY N V. Effect of the charging conditions on the cycle performance of Fe2O3/C composite anodes for ironair batteries[J]. J. Electron. Mater., 2022,51:2168-2177. doi: 10.1007/s11664-022-09472-3

    35. [35]

      HE W C, SHAO H B, CHEN Q Q, WANG J M, ZHANG J Q. Polarization characteristic of iron anode in concentrated NaOH solution[J]. Acta Phys. -Chim. Sin., 2007,23(10):1525-1530.

    36. [36]

      MANOHAR A K, YANG C G, MALKHANDI S, PRAKASH G K S, NARAYANAN S R. Enhancing the performance of the rechargeable iron electrode in alkaline batteries with bismuth oxide and iron sulfide additives[J]. J. Electrochem. Soc., 2013,160(11):A2078-A2084. doi: 10.1149/2.066311jes

    37. [37]

      WEINRICH H, GEHRING M, TEMPEL H, KUNGL H, EICHEL R A. Impact of the charging conditions on the discharge performance of rechargeable iron-anodes for alkaline iron-air batteries[J]. J. Appl. Electrochem., 2018,48:451-462. doi: 10.1007/s10800-018-1176-4

    38. [38]

      McKERRACHER R D, DE LEON C P, WILLS R G A, SHAH A A, WALSH F C. A review of the ironair secondary battery for energy storage[J]. ChemPlusChem, 2015,80:323-335. doi: 10.1002/cplu.201402238

    39. [39]

      MANOHAR A K, MALKHANDI S, YANG B, YANG C, PRAKASH G K S, NARAYANAN S R. A highperformance rechargeable iron electrode for large-scale battery-based energy storage[J]. J. Electrochem. Soc., 2012,159(8):A1209-A1214. doi: 10.1149/2.034208jes

    40. [40]

      FU J, LIANG R L, LIU G H, YU A P, BAI Z Y, YANG L, CHEN Z W. Recent progress in electrically rechargeable zinc-air batteries[J]. Adv. Mater., 2019,31(31)1805230. doi: 10.1002/adma.201805230

  • 加载中
    1. [1]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    2. [2]

      Fengjun DengTingyu ZhaoXiaochen ZhangKaiyong FengZe LiuYoulin XiangYingjian Yu . Reduced graphene oxide assembled on the Si nanowire anode enabling low passivation and hydrogen evolution for long-life aqueous Si-air batteries. Chinese Chemical Letters, 2025, 36(6): 109897-. doi: 10.1016/j.cclet.2024.109897

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    7. [7]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    8. [8]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    9. [9]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    10. [10]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    11. [11]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    12. [12]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    13. [13]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    14. [14]

      Hongliang ZengYuan JiJinfeng WenXu LiTingting ZhengQiu JiangChuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686

    15. [15]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    16. [16]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    17. [17]

      Lizhang Chen Yu Fang Mingxin Pang Ruoxu Sun Lin Xu Qixing Zhou Yawen Tang . Interfacial engineering of core/satellite-structured RuP/RuP2 heterojunctions for enhanced pH-universal hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100461-100461. doi: 10.1016/j.cjsc.2024.100461

    18. [18]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    19. [19]

      Yingfen LiZhiqi WangYunhai ZhaoDajun LuoXueliang ZhangJun ZhaoZhenghua SuShuo ChenGuangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468

    20. [20]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

Metrics
  • PDF Downloads(0)
  • Abstract views(231)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return