Citation: Jianqiao ZHANG, Yang LIU, Yan HE, Yaling ZHOU, Fan YANG, Shihui CHENG, Bin XIA, Zhong WANG, Shijian CHEN. Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444 shu

Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property

  • Corresponding author: Shijian CHEN, 17723890903@163.com
  • Received Date: 16 December 2024
    Revised Date: 26 June 2025

Figures(4)

  • Ni-doped WP2 nanowirearrays were successfully prepared on carbon cloth(CC)by the hydrothermal method, and then phosphorized using the high vacuum solid-phase phosphorization method to obtain CC surface-grown Ni-doped WP2 nanowire composite material (Ni-WP2 NWs/CC). The electrochemical test results show that after Ni doping, the overpotential of the hydrogen evolution reaction in the alkaline environment was reduced. When the molar ratio of Ni and W was 10%, the 10%Ni-WP2 NWs/CCexhibited the best catalytic performance. Under alkaline conditions, when the current density was 10 and 100 mA·cm-2, the required overpotentials for 10%Ni-WP2 NWs/CC were 115 and 190 mV, respectively. After Ni doping, the electrochemically active surface area of 10%Ni-WP2 NWs/CC significantly increased. In addition, the catalyst maintained good working stability under long-term electrocatalytic conditions.
  • 加载中
    1. [1]

      ZOU X X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem. Soc. Rev., 2015,44(15):5148-5180.

    2. [2]

      HA D H, HAN B H, RISCH M, GIORDANO L, YAO K P C, KARAYAYLALI P, SHAO-HORN Y. Activity and stability of cobalt phosphides for hydrogen evolution upon water splitting[J]. Nano Energy, 2016,29:37-45.

    3. [3]

      PI M Y, WU T L, ZHANG D K, CHEN S J, WANG S X. Self-supported three-dimensional mesoporous semimetallic WP2 nanowire arrays on carbon cloth as a flexible cathode for efficient hydrogen evolution[J]. Nanoscale, 2016,8(47):19779-19786.

    4. [4]

      PU Z H, LIU Q, ASIRI A M, SUN X P. Tungsten phosphide nanorod arrays directly grown on carbon cloth: A highly efficient and stable hydrogen evolution cathode at all pH values[J]. ACS Appl. Mater. Interfaces, 2014,6(24):21874-21879.

    5. [5]

      EL-REFAEI S M, RUSSO P A, PINNA N. Recent advances in multimetal and doped transition-metal phosphides for the hydrogen evolution reaction at different pH values[J]. ACS Appl. Mater. Interfaces, 2021,13(19):22077-22097.

    6. [6]

      YANG Y X, FENG X Y, LIU Z Z, ZHANG X M, SONG H, PI C R, GAO B, CHU P K, HUO K F. Enhanced hydrogen evolution activity of phosphorus-rich tungsten phosphide by cobalt doping: A comprehensive study of the active sites and electronic structure[J]. ChemElectroChem, 2021,8(9):1658-1664.

    7. [7]

      SUN H M, YAN Z H, LIU F M, XU W C, CHENG F Y, CHEN J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Adv. Mater., 2019,32(3)1806326.

    8. [8]

      CHEN Z J, DUAN X G, WEI W, WANG S B, NI B J. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution[J]. J. Mater. Chem. A, 2019,7(25):14971-15005.

    9. [9]

      WANG J J, CHANG K, SUN Z Y, LEE J H, TACKETT B M, ZHANG C, CHEN J G, LIU C J. A combined experimental and theoretical study of the accelerated hydrogen evolution kinetics over wide pH range on porous transition metal doped tungsten phosphide electrocatalysts[J]. Appl. Catal. B-Environ. Energy., 2019,251:162-167.

    10. [10]

      MENG F Y, YU Y, SUN D F, LI L, LIN S M, HUANG L, CHU W H, MA S F, XU B S. Three-dimensional flower-like WP2 nanowire arrays grown on Ni foam for full water splitting[J]. Appl. Surf. Sci., 2021,546148926.

    11. [11]

      QIN Q, LI J, GUO Z G, JIAN C Y, LIU W. Tungsten phosphide nanosheets seamlessly grown on tungsten foils toward efficient hydrogen evolution reaction in basic and acidic media[J]. Int. J. Hydrog. Energy, 2019,44(50):27483-27491.

    12. [12]

      WU L, PU Z H, TU Z K, AMIINU I S, LIU S, WANG P Y, MU S C. Integrated design and construction of WP/W nanorod array electrodes toward efficient hydrogen evolution reaction[J]. Chem. Eng. J., 2017,327:705-712.

    13. [13]

      QI J, WU T, XU M Y, ZHOU D, XIAO Z B. Electronic structure and d-band center control engineering over Ni-doped CoP3 nanowall arrays for boosting hydrogen production[J]. Nanomaterials, 2021,11(6)1595.

    14. [14]

      LIANG K, PAKHIRA S, YANG Z Z, NIJAMUDHEEN A, JU L C, WANG M Y, AGUIRRE-VELEZ C I, STERBINSKY G E, DU Y G, FENG Z X, MENDOZA-CORTES J L, YANG Y. S-doped MoP nanoporous layer toward high-efficiency hydrogen evolution in pH-universal electrolyte[J]. ACS Catal., 2018,9(1):651-659.

  • 加载中
    1. [1]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    2. [2]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    3. [3]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    4. [4]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    8. [8]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    11. [11]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    12. [12]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    13. [13]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    14. [14]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(0)
  • Abstract views(7)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return