Citation: Yuanyuan JIANG, Fangfang TU, Yuhong ZHANG, Shi CHEN, Jiayuan XIANG, Xinhui XIA. Preparation and electrochemical properties of high-stability cathode prelithiation additive[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441 shu

Preparation and electrochemical properties of high-stability cathode prelithiation additive

  • Corresponding author: Fangfang TU, tuff@naradapower.com
  • Received Date: 11 December 2024
    Revised Date: 15 April 2025

Figures(12)

  • In this work, based on the catalytic effect of several metal oxides on the decomposition of lithium oxalate (Li2C2O4, LCO), a series of CuMnxO1+1.5x bimetallic oxides with different molar ratios (x) of Mn and Cu were synthesized via the controlled calcination of CuO-Mn2O3 mixture. The structural composition and surface morphology were characterized using the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption isotherms, and scanning electron microscopy (SEM). The catalysts were applied in the electrochemical test of LCO at 0.05C within the voltage range of 2.5-4.5 V. Results showed that the charge specific capacity of LCO could be increased to 404.7 mAh·g-1 and delithium potential can be reduced to 4.44 V with the initial Coulombic efficiency of 1.3% over CuMn1.1O2.7 catalyst, which could match with the lithium iron phosphate (LFP) materials as a cathode prelithiation additive. The rate-determining step of LCO decomposition and the mechanism of the catalyst were revealed by density functional theory (DFT) calculations. Subsequently, a certain amount of LCO/CuMn1.1O2.7 was added to the LFP slurry, and the corresponding electrochemical performance was tested by assembling half-cells. It was found that under the optimal lithium supplement content, the initial charge capacity of the LFP electrode was 205.9 mAh·g-1, and the practical capacity utilization of LCO could reach 74.1%. Moreover, the cycle performance of LFP can also be improved by using an LCO prelithiation additive.
  • 加载中
    1. [1]

      ZOU K Y, DENG W T, CAI P, DENG X L, WANG B W, LIU C, LI J Y, HOU H S, ZOU G Q, JI X B. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: Concepts, applications, and perspectives[J]. Adv. Funct. Mater., 2021,312005581. doi: 10.1002/adfm.202005581

    2. [2]

      MIN X Q, XU G J, XIE B, GUAN P, SUN M L, CUI G L. Challenges of prelithiation strategies for next generation high energy lithium-ion batteries[J]. Energy Storage Mater., 2022,47:297-318. doi: 10.1016/j.ensm.2022.02.005

    3. [3]

      SUN L, XIE J, LIU T, HUANG S C, ZHANG L, CHEN Z D, JIANG R Y, JIN Z. Preparation of porous silicon nanomaterials and applications in high energy lithium ion batteries[J]. Chinese J. Inorg. Chem., 2020,36(3):393-405.

    4. [4]

      HOLTSTIEGE F, BÄRMANN P, NÖLLE R, WINTER M, PLACKE T. Pre-lithiation strategies for rechargeable energy storage technologies: Concepts, promises and challenges[J]. Batteries, 2018,4(1):1-39.

    5. [5]

      KIM H J, CHOI S, LEE S J, SEO M W, LEE J G, DENIZ E, LEE Y J, KIM E K, CHOI J W. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells[J]. Nano Lett., 2016,16(1):282-288. doi: 10.1021/acs.nanolett.5b03776

    6. [6]

      JANG J, KANG I, CHOI J, JEONG H, YI K W, HONG J, LEE M. Molecularly tailored lithium-arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes[J]. Angew. Chem. -Int. Edit., 2020,59(34):14473-14480. doi: 10.1002/anie.202002411

    7. [7]

      YANG M Y, LI G, ZHANG J, TIAN Y F, YIN Y X, ZHANG C J, JIANG K C, XU Q, LI H L, GUO Y G. Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2020,12(24):27202-27209. doi: 10.1021/acsami.0c05153

    8. [8]

      ZHANG H Q, CHENG J, LIU H B, LI D P, ZENG Z, LI Y Y, JI F J, GUO Y X, WEI Y R, ZHANG S, BAI T S, XU X, PENG R Q, LU J Y, CI L J. Prelithiation: A critical strategy towards practical application of high-energy-density batteries[J]. Adv. Energy Mater., 2023,132300466. doi: 10.1002/aenm.202300466

    9. [9]

      ZHANG S Q, ANDREAS N S, LI R H, ZHANG N, SUN C C, LU D, GAO T, CHEN L X, FAN X L. Mitigating irreversible capacity loss for higher-energy lithium batteries[J]. Energy Storage Mater., 2022,48:44-73. doi: 10.1016/j.ensm.2022.03.004

    10. [10]

      ZHANG L H, DOSE W, VU A, JOHNSON C S, LU W Q. Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4[J]. J. Power Sources, 2018,340(1):549-555.

    11. [11]

      KIMA M, CHO J. Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell[J]. J. Mater. Chem., 2008,18(48):5880-5887. doi: 10.1039/b814161d

    12. [12]

      SUN C K, ZHANG X, LI C, WANG K, SUN X Z, MA Y W. High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance[J]. Energy Storage Mater., 2020,24:160-166. doi: 10.1016/j.ensm.2019.08.023

    13. [13]

      SON Y, LEE J S, SON Y, JANG J H, CHO J. Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries[J]. Adv. Energy Mater., 2015,51500110. doi: 10.1002/aenm.201500110

    14. [14]

      LIU G X, WAN W, NIE Q, ZHANG C, CHEN X L, LIN W H, WEI X Z, HUANG Y H, LI J, WANG C. Controllable long-term lithium replenishment for enhancing energy density and cycle life of lithiumion batteries[J]. Energy Environ. Sci., 2024,17:1163-1174. doi: 10.1039/D3EE03740A

    15. [15]

      SHEN B L, ZHANG H J, WU Y J, JIANG H, HU Y J, LI C Z. Co3O4 quantum dotcatalyzed lithium oxalate as a capacity and cycle-life enhancer in lithium-ion full cells[J]. ACS Appl. Energy Mater., 2022,5:2112-2120. doi: 10.1021/acsaem.1c03675

    16. [16]

      HUANG G X, LIANG J N, ZHONG X G, LIANG H Y, CUI C, ZENG C, WANG S H, LIAO M Y, SHEN Y, ZHAI T Y, MA Y, LI H Q. Boosting the capability of Li2C2O4 as cathode pre-lithiation additive for lithium-ion batteries[J]. Nano Res., 2023,16:3872-3878. doi: 10.1007/s12274-022-5146-0

    17. [17]

      ZHANG H Q, BAI T S, CHENG J, JI F J, ZENG Z, LI Y Y, ZHANG C W, WANG J X, XIA W H, CI N X, GUO Y X, GAO D D, ZHAI W, LU J Y, CI L J, LI D P. Unlocking the decomposition limitations of the Li2C2O4 for highly efficient cathode preliathiations[J]. Adv. Powder Mater., 2024,3(5)100215. doi: 10.1016/j.apmate.2024.100215

    18. [18]

      PAIER J, HIRSCHL R, MARSMAN M, KRESSE G. The Perdew-Burke-Ernzerh of exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set[J]. J. Chem. Phys., 2005,122234102. doi: 10.1063/1.1926272

    19. [19]

      GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory[J]. J. Comput. Chem., 2011,32:1456-1465. doi: 10.1002/jcc.21759

    20. [20]

      ZHANG T Z, WU J L, TAO R, PAN Q F, LIU X N, HU Y, JIANG C L, YE X Q, CHEN J. Construction of CuO/Cu/WO3-x/WO3/W self-supported electrodes by a dry chemical route for hydrogen evolution reaction[J]. Appl. Surf. Sci., 2022,585152757. doi: 10.1016/j.apsusc.2022.152757

    21. [21]

      WAN X Y, TANG N N, XIE Q, ZHAO S Y, ZHOU C M, DAI Y H, YANG Y H. A CuMn2O4 spinel oxide as a superior catalyst for the aerobic oxidation of 5-hydroxymethylfurfural toward 2, 5-furandicarboxylic acid in aqueous solvent[J]. Catal. Sci. Technol., 2021,11:1497-1509. doi: 10.1039/D0CY01649G

    22. [22]

      SUN Z Y, ZHAO J W, LIU J. Design of electrolyte for high specific energy lithium ion batteries working at high voltage[J]. Chem. J. Chinese Universities, 2023,44(5)20220743.

    23. [23]

      YANG Q, TANG Y T, ZHANG H D, CHEN J, JIANG Z Q, XIONG K, WANG J J, LIU X N, YANG N, DU Q Y, SONG Y T. Classic deep oxidation CuMnOx catalysts catalyzed selective oxidation of benzyl alcohol[J]. Appl. Surf. Sci., 2023,610155364. doi: 10.1016/j.apsusc.2022.155364

    24. [24]

      LI J T, DAI A, AMINE K, LU J. Correlating catalyst design and discharged product to reduce overpotential in Li-CO2 batteries[J]. Small, 2021,17(48)2007760. doi: 10.1002/smll.202007760

    25. [25]

      ZHEN S Y, SUN W, LI P Q, TANG G Z, ROONEY D, SUN K N, MA X X. High performance Cobalt-free Cu1.4Mn1.6O4 spinel oxide as an intermediate temperature solid oxide fuel cell cathode[J]. J. Power Sources, 2016,315:140-144. doi: 10.1016/j.jpowsour.2016.03.046

    26. [26]

      YANG C, GUO K K, YUAN D W, CHENG J L, WANG B. Unraveling reaction mechanisms of Mo2C as cathode catalyst in a Li-CO2 battery[J]. J. Am. Chem. Soc., 2020,142:6983-6990. doi: 10.1021/jacs.9b12868

    27. [27]

      HU J, YANG C, GUO K K. Understanding the electrochemical reaction mechanisms of precious metals Au and Ru as cathode catalysts in Li-CO2 batteries[J]. J. Mater. Chem. A, 2022,1014028. doi: 10.1039/D2TA02495K

    28. [28]

      ZHONG W, ZHANG C, LI S W, ZHANG W, ZENG Z Q, CHENG S J, XIE J. Mo2C catalyzed low-voltage prelithiation using nano-Li2C2O4 for high-energy lithium-ion batteries[J]. Sci. China Mater., 2023,66:903-912. doi: 10.1007/s40843-022-2235-4

    29. [29]

      ESHETU G, DIEMANT T, GRUGEON S, BEHM R, LARUELLE S, ARMAND M, PASSERINI S. In-depth interfacial chemistry and reactivity focused investigation of lithium-imide-and lithium-imidazole-based electrolytes[J]. ACS Appl. Mater. Interfaces, 2016,8:16087-16100. doi: 10.1021/acsami.6b04406

  • 加载中
    1. [1]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    2. [2]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    5. [5]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    6. [6]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    7. [7]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    9. [9]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    10. [10]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    11. [11]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    12. [12]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    18. [18]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

Metrics
  • PDF Downloads(0)
  • Abstract views(279)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return