Citation: Ronghui LI. Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440 shu

Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition

  • Received Date: 11 December 2024
    Revised Date: 6 March 2025

Figures(10)

  • Nitrogen-doped CeO2 thin films were synthesized by the ion beam-assisted deposition (IBAD) technique, and their photocatalytic performances were studied. The synthesized thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and ultraviolet-visible absorption spectroscopy (UV-Vis). Results showed that the IBAD technology enabled homogenous doping in the whole bulk of CeO2 thin films, with a significantly higher nitrogen content than traditional nitrogen doping methods. Nitrogen ion bombardment on the growing film surface did not alter the crystal structure of the films—instead, the heavy nitrogen doping induced a smaller grain size of CeO2. Additionally, with the increase of N doping, the surface became smoother with a smaller particle size. The heavy nitrogen doping also induced a redshift of the visible light absorbance edge from 370 to 480 nm, significantly enhancing the visible light absorption performance of CeO2 thin films. Photocatalytic degradation tests of methylene blue showed that after 120 min of visible light irradiation, the degradation rate of methylene blue in the solution exceeded 90% and was maintained at ca. 86% even after 6 cycles, demonstrating excellent visible light photocatalytic stability.
  • 加载中
    1. [1]

      PAN J B, SHEN S, ZHOU W, TANG J, DING H Z, WANG J B, CHEN L, QU Z T, YIN S F. Recent progress in photocatalytic hydrogen evolution[J]. Acta. Phys.-Chim. Sin., 2020,36(3)1905068.

    2. [2]

      WANG D X, ZHANG X T, YANG C Y, QU F Y, HUANG J, HE J B, YANG Z R, GUO W. Photocatalysis assisted solar-driven interfacial water evaporation: Principles, advances and trends[J]. Sep. Purif. Technol., 2024,360130975.

    3. [3]

      FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238(5358):37-38. doi: 10.1038/238037a0

    4. [4]

      KHAN S U M, AL-SHAHRY M, INGLER W B. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science, 2002,297(5590):2243-2245. doi: 10.1126/science.1075035

    5. [5]

      CHEN X B, LIU L, YU P Y, MAO S S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011,331(6018):746-750. doi: 10.1126/science.1200448

    6. [6]

      RAZEGHI A, KHODADADI A, ZIAEI-AZADA H, MORTAZAVI Y. Activity enhancement of Cu-doped ceria by reductive regeneration of CuO-CeO2 catalyst for preferential oxidation of CO in H2-rich streams[J]. Chem. Eng. J., 2010,164(1):214-220. doi: 10.1016/j.cej.2010.07.064

    7. [7]

      NAIR J P, WACHTEL E, LUBOMIRSKEY I, FLEIG J, MAIER J. Anomalous expansion of CeO2 nanocrystalline membranes[J]. Adv. Mater., 2003,15(24):2077-2080. doi: 10.1002/adma.200305549

    8. [8]

      YABE S, SATO T. Cerium oxide for sunscreen cosmetics[J]. J. Solid State Chem., 2003,171(1/2):7-11.

    9. [9]

      FAUZI A A, JALIL A A, HASSAN N S, AZAMI M S, HUSSAIN I, SARAVANAN R, VO D V N. A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant[J]. Chemosphere, 2022,286131651. doi: 10.1016/j.chemosphere.2021.131651

    10. [10]

      HARON M J, RAHIM F A, ABDULLAH A H, HUSSEIN M Z, KASSIM A. Sorption removal of arsenic by cerium exchanged zeolite P[J]. Mater. Sci. Eng. B, 2008,38(14):204-208.

    11. [11]

      PENG X J, LUAN Z K, DING J, DI Z C, LI Y H, TIAN B H. Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water[J]. Mater. Lett., 2005,59(4):399-403. doi: 10.1016/j.matlet.2004.05.090

    12. [12]

      RAICHUR A M, BASU M J. Adsorption of fluoride onto mixed rare earth oxides[J]. Sep. Purif. Technol., 2001,24(1/2):121-127.

    13. [13]

      BAMWENDA G R, ARAKAWA H. Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of Ce4+ and Fe3+ species[J]. J. Mol. Catal. A-Chem., 2000,161(1/2):105-113.

    14. [14]

      MAO C, ZHAO Y X, QIU X F, ZHU J J, BURDA C. Synthesis, characterization and computational study of nitrogen doped CeO2 nanoparticles with visible-light activity[J]. Phys. Chem. Chem. Phys., 2008,10(36):5633-5638. doi: 10.1039/b805915b

    15. [15]

      SARAVANAKUMAR K, MUTHUPOONGODI S, MUTHURAJ V. A novel n-CeO 2/n-CdO heterojunction nanocomposite for enhanced photodegradation of organic pollutants under visible light irradiation[J]. J. Rare Earths, 2019,37(8):853-860. doi: 10.1016/j.jre.2018.12.009

    16. [16]

      LIU G H, WANG H Y, CHEN D H, DAI C C, ZHANG Z H, FENG Y J. Photodegradation performances and transformation mechanism of sulfamethoxazole with CeO 2/CN heterojunction as photocatalyst[J]. Sep. Purif. Technol., 2020,237116329. doi: 10.1016/j.seppur.2019.116329

    17. [17]

      CASTAÑEDA C, GUTIÉRREZ K, ALVARADO I, MARTÍNEZ J J, ROJAS H, TZOMPANTZI F, GÓMEZ R. Effective phosphated CeO2 materials in the photocatalytic degradation of phenol under UV irradiation[J]. J. Chem. Technol. Biotechnol., 2020,95(12):3213-3220. doi: 10.1002/jctb.6499

    18. [18]

      HAO Y, CHEN S H, WU L M, CHEN R, SUN P C, CHEN T H. Hierarchically porous silica supported ceria and platinum nanoparticles for catalytic combustion of toluene[J]. J. Alloy. Compd., 2021,867159030. doi: 10.1016/j.jallcom.2021.159030

    19. [19]

      ASAHI R, MORIKAWA T, OHWAKI T, AOKI K, TAGA Y. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001,293(5528):269-271. doi: 10.1126/science.1061051

    20. [20]

      LI Y X, JIANG Y, PENG S Q, JIANG F Y. Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of form-aldehyde under blue light-emitting diodes[J]. J. Hazard. Mater., 2010,182(1/2/3):90-96.

    21. [21]

      LI Y X, XIE C F, PENG S Q, LU G X, LI S B. Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution[J]. J. Mol. Catal. A-Chem., 2008,282(1/2):117-123.

    22. [22]

      JORGE A B, FRAXEDAS J, CANTARERO A, WILLIAMS A J, RODGERS J, ATTFIELD J P, FUERTES A. Nitrogen doping of ceria[J]. Chem. Mater., 2008,5(20):1682-1684.

    23. [23]

      DIWALD O, THOMPSON T L, GORALSKI E G, WALCK S D, YATES J T. The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals[J]. J. Phys. Chem. B, 2004,108(1):52-57.

    24. [24]

      YU H, YE L, ZHANG T Z, ZHOU H, ZHAO T. Synthesis, characterization and immobilization of N-doped TiO2 catalysts by a reformed polymericprecursor method[J]. RSC Adv., 2017,7(25):15265-15271.

    25. [25]

      KIM T H, GO G M, CHO H B, SONG Y, LEE C G, CHO Y H. A novel synthetic method for N doped TiO2 nanoparticles through plasma-assisted electrolysis and photocatalytic activity in the visible region[J]. Front. Chem., 2018,6458.

    26. [26]

      QIU L M, LIU F, ZHAO L Z, MA Y, YAO J N. Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria powder[J]. Appl. Surf. Sci., 2006,252(14):4931-4935.

    27. [27]

      LIU G, WANG L Z, SUN C H, YAN X X, WANG X W, CHEN Z G, SMITH S C, CHENG H M, LU G Q. Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titanates[J]. Chem. Mater., 2009,21(7):1266-1274.

    28. [28]

      ASAHI R, MORIKAWA T, OHWAKI T, AOKI K, TAGA Y. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001,293(5528):269-271.

    29. [29]

      MITORAJ D, KISCH H. The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light[J]. Angew. Chem. -Int. Edit., 2008,47(51):9975-9978.

    30. [30]

      LIVRAGHI S, PAGANINI M C, GIAMELLO E, SELLONI A, VALENTIN C D, PACCHIONI G. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light[J]. J. Am. Chem. Soc., 2006,128(49):15666-15671.

    31. [31]

      YANG K S, DAI Y, HUANG B B, HAN S H. Theoretical study of N-doped TiO2 rutile crystals[J]. J. Phys. Chem. B, 2006,110(47):24011-24014.

    32. [32]

      SU H, LI J, ZHONG Y, LIU Y, GAO X H, KUANG J, WANG M K, LIN C X, WANG X L, TU J P. A scalable Li-Al-Cl stratified structure for stable all-solid-state lithium metal batteries[J]. Nat. Commun., 2024,154202.

    33. [33]

      ZHANG X, XIONG W P, WANG T, CHAI E C, LIN J, HUANG L T, FENG Y Y, WU M X, WANG Y B. Cascade electrosynthesis of LiTFSI and N-containing analogues via a looped Li-N2 battery[J]. Nat. Catal., 2024,7:55-64.

    34. [34]

      LI S Q, PENG S Q, LI Y X. Constructing an open-structured J-type ZnIn2S4/In(OH)3 heterojunction for photocatalytical hydrogen generation[J]. J. Phys. Chem. Lett., 2024,15(19):5215-5222.

    35. [35]

      ZENG D D, LI Y X. Precisely assembling a CoO cocatalyst onto Tb4O7/CN and Pt-Tb4O7/CN for promoting photocatalytic overall water splitting[J]. Inorg. Chem., 2024,63(18):8397-8407.

  • 加载中
    1. [1]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    13. [13]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    14. [14]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    18. [18]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    19. [19]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(0)
  • Abstract views(237)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return