Citation: Zhengkun QIN, Zicong PAN, Hui TIAN, Wanyi ZHANG, Mingxing SONG. A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429 shu

A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study

  • Corresponding author: Mingxing SONG, mxsong@jlnu.edu.cn
  • Received Date: 4 December 2024
    Revised Date: 5 April 2025

Figures(6)

  • We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ) complexes featuring a transition metal as their core atom to identify some appropriate organic light-emitting diode (OLED) materials. By utilizing electronic structure, frontier molecular orbitals, minimum single-line absorption, triplet excited states, and emission spectral data derived from the density functional theory, the usefulness of these Ir(Ⅲ) complexes, including (piq)2Ir(acac), (piq)2Ir(tmd), (piq)2Ir(tpip), (fpiq)2Ir(acac), (fpiq)2Ir(tmd), and (fpiq)2Ir(tpip), in OLEDs was examined, where piq=1-phenylisoquinoline, fpiq=1-(4-fluorophenyl) isoquinoline, acac=(3Z)-4-hydroxypent-3-en-2-one, tmd=(4Z)-5-hydroxy-2, 2, 6, 6-tetramethylhept-4-en-3-one, and tpip=tetraphenylimido-diphosphonate. These complexes all have low-efficiency roll-off properties, especially (fpiq)2Ir(tpip). Some researchers have successfully synthesized complexes extremely similar to (piq)2Ir(acac) through the Suzuki-Miyaura coupling reaction.
  • 加载中
    1. [1]

      ZHAO J H, HU Y X, LU H Y, LÜ Y L, LI X. Progress on benzimidazole-based iridium(Ⅲ) complexes for application in phosphorescent OLEDs[J]. Org. Electron., 2017,41:56-72. doi: 10.1016/j.orgel.2016.11.039

    2. [2]

      LU G Z, SU N, YANG H Q, ZHU Q, ZHANG W W, ZHENG Y X, ZHOU L, ZUO J L, CHEN Z X, ZHANG H J. Correction: Rapid room temperature synthesis of red iridium(Ⅲ)) complexes containing a four-membered Ir—S—C—S chelating ring for highly efficient OLEDs with EQE over 30%[J]. Chem. Sci., 2019,10(39):9152-9152. doi: 10.1039/C9SC90213A

    3. [3]

      LU G Z, LI X, LIU L, ZHOU L, ZHENG Y X, ZHANG W W, ZUO J L, ZHANG H. Efficient phosphorescent red iridium(Ⅲ) complexes containing a four-membered Ir—S—C—S ring backbone and large hindered spacers for high-performance OLEDs[J]. J. Mater. Chem. C, 2019,7(13):3862-3868. doi: 10.1039/C9TC00440H

    4. [4]

      CHO W, SARADA G, LEE H, SONG M, GAL Y S, LEE Y, JIN S H. Highly efficient, conventional and flexible deep-red phosphorescent OLEDs using ambipolar thiophene/selenophene-phenylquinoline ligand-based Ir(Ⅲ) complexes[J]. Dyes Pigment., 2017,136:390-397. doi: 10.1016/j.dyepig.2016.08.060

    5. [5]

      LEE Y H, KIM Y S. Theoretical study of Ir(Ⅲ) complexes with cyclometalated alkenylquinoline ligands[J]. Curr. Appl. Phys., 2007,7(5):504-508. doi: 10.1016/j.cap.2006.10.006

    6. [6]

      SU N, YANG H Q, ZHENG Y X, CHEN Z X. Sulfur atom containing ligands induced rapid room temperature synthesis of red iridium(Ⅲ) complexes with Ir—S—P—S structures for OLEDs[J]. New J. Chem., 2019,43(22):8722-8727. doi: 10.1039/C9NJ01599J

    7. [7]

      YANG X L, GUO H R, LIU B A, ZHAO J, ZHOU G J, WU Z X, WONG W Y. Diarylboron-based asymmetric red-emitting Ir(Ⅲ) complex for solution-processed phosphorescent organic light-emitting diode with external quantum efficiency above 28%[J]. Adv. Sci., 2018,5(5)1701067. doi: 10.1002/advs.201701067

    8. [8]

      WANG L, WANG N, ZHANG Y X, HE H Q, ZHANG J L. Color tuning from red to green of bis-cyclometalated iridium(Ⅲ) emitters based on benzoimidazole ligands in OLEDs: A DFT and TD-DFT investigation[J]. Synth. Met., 2014,194:160-169. doi: 10.1016/j.synthmet.2014.04.027

    9. [9]

      LEPELTIER M, DUMUR F, WANTZ G, VILA N, MBOMEKALLÉ I, BERTIN D, GIGMES D, MAYER C R. Red phosphorescent organic light-emitting diodes (PhOLEDs) based on a heteroleptic cyclometalated iridium(Ⅲ) complex[J]. J. Lumin., 2013,143:145-149. doi: 10.1016/j.jlumin.2013.05.004

    10. [10]

      LEE H S, SEO J H, CHOI M K, KIM Y K, HA Y. Synthesis and luminescence study of red phosphorescent Ir(Ⅲ) pyrazolonate complexes for OLED[J]. J. Phys. Chem. Solids, 2008,69(5/6):1305-1309.

    11. [11]

      JI Y, GUO X L, YANG J Y, ZHANG H H, LIU X H, SONG M X, QIN Z K, WANG J, BAI F Q. A series of theoretical studies on phosphorescent materials based on deep red/near-infrared iridium complex with low-efficiency roll-off performance[J]. Mol. Phys., 2023,121(15)e2217781. doi: 10.1080/00268976.2023.2217781

    12. [12]

      SONG M X, JI Y, ZHANG H H, LIU X H, YANG J Y, GUO X L, WANG J, QIN Z K, BAI F Q. A theoretical study of a series of iridium complexes with methyl or nitro-substituted 2-(4-fluorophenyl)pyridine ligands with the low-efficiency roll-off performance[J]. Chem. Phys. Lett., 2023,820140465. doi: 10.1016/j.cplett.2023.140465

    13. [13]

      JIANG B, ZHAO C Y, NING X W, ZHONG C, MA D G, YANG C L. Using simple fused-ring thieno[2, 3-d]pyrimidine to construct orange/red Ir(Ⅲ) complexes: High-performance red organic light-emitting diodes with EQEs up to nearly 28%[J]. Adv. Opt. Mater., 2018,6(14)1800108. doi: 10.1002/adom.201800108

    14. [14]

      SONG M X, CHI H Y, XI G Q, LÜ P, HE K C, QIN Z K, ZHANG Y L, LÜ S Q, ZHANG H J. Series of blue phospho-iridium complexes with m-filled phenyl imidazole ligands studied by density functional theory and time-dependent density functional theory[J]. J. Phys. Org. Chem., 2020,33(6)e4052. doi: 10.1002/poc.4052

    15. [15]

      QIN Z K, YANG J Y, GUO X L, JI Y, ZHANG Y K, PAN Z C, WANG M Q, SONG M X. Theoretical study on luminescence properties of a series of iridium complexes with high spin orbit coupling coefficients[J]. J. Phys. Org. Chem., 2023,36(10)e4552. doi: 10.1002/poc.4552

    16. [16]

      SONG M X, XI G Q, CHI H Y, HE K C, LÜ P, QIN Z K, ZHANG Y L, LÜ S Q, ZHANG H J. A theoretical study: Green phosphorescent iridium(Ⅲ) complexes with low-efficiency roll-off[J]. Appl. Organomet. Chem., 2020,34(5)e5525. doi: 10.1002/aoc.5525

    17. [17]

      YAN J, WU Y, PENG I C, PAN Y, YIU S M, WONG K T, HUNG W Y, CHI Y, LAU K C. Peripheral engineering of Ir(Ⅲ) emitters with imidazo[4, 5-b]pyrazin-2-ylidene cyclometalates for blue organic light emitting diodes[J]. J. Mater. Chem. C, 2023,11(36):12270-12279. doi: 10.1039/D3TC02398B

    18. [18]

      SONG M X, ZHANG H H, LIU X H, JI Y, GUO X L, YANG J Y, QIN Z K, BAI F Q, ZHANG H J. Theoretical study of the high intersystem spin crossing (ISC) ability of a series of iridium complexes with low efficiency roll-off properties[J]. Appl. Organomet. Chem., 2022,36(11)e6875. doi: 10.1002/aoc.6875

    19. [19]

      NIU Z G, YAN L P, WU L, CHEN G Y, SUN W, LIANG X, ZHENG Y X, LI G N, ZUO J L. Iridium(Ⅲ) complexes adopting thienylpyridine derivatives for yellow-to-deep red OLEDs with low efficiency roll-off[J]. Dyes Pigment., 2019,162:863-871. doi: 10.1016/j.dyepig.2018.11.017

    20. [20]

      ALTINOLCEK N, BATTAL A, TAVASLI M, CAMERON J, PEVELER W J, YU H A, SKABARA P J. Yellowish-orange and red emitting quinoline-based iridium(Ⅲ) complexes: Synthesis, thermal, optical and electrochemical properties and OLED application[J]. Synth. Met., 2020,268116504. doi: 10.1016/j.synthmet.2020.116504

    21. [21]

      TOPCHIY M A, RZHEVSKIY S A, AGESHINA A A, KIRILENKO N YU, STERLIGOV G K, MLADENTSEV D YU, PARASCHUK D YU, OSIPOV S N, NECHAEV M S, ASACHENKO A F. Deep blue luminescent cyclometallated 1, 2, 3-triazol-5-ylidene iridium(Ⅲ) complexes[J]. Mendeleev Commun., 2020,30(6):717-718. doi: 10.1016/j.mencom.2020.11.009

    22. [22]

      KIM H U, PARK H J, JANG J H, SONG W, JUNG I H, LEE J Y, HWANG D H. Green phosphorescent homoleptic iridium(Ⅲ) complexes for highly efficient organic light-emitting diodes[J]. Dyes Pigment., 2018,156:395-402. doi: 10.1016/j.dyepig.2018.04.025

    23. [23]

      HAM H W, KIM I J, KIM Y S. The role of ancillary ligands in iridium(Ⅲ) complexes for blue OLEDs[J]. Mol. Cryst. Liquid Cryst., 2009,505(1):130-138.

    24. [24]

      PARK Y H, KIM Y S. New red electrophosphor based on Ir(Ⅲ) complex of 2, 3, 4-triphenylquinoline[J]. Curr. Appl. Phys., 2007,7(5):500-503. doi: 10.1016/j.cap.2006.10.005

    25. [25]

      BALDO M A, O'BRIEN D F, YOU Y, SHOUSTIKOV A, SIBLEY S, THOMPSON M E, FORREST S R. Highly efficient phosphorescent emission from organic electroluminescent devices[M]//THOMPSON M. Electrophosphorescent materials and devices. New York: Jenny Stanford Publishing, 2023: 1-11

    26. [26]

      ADACHI C, BALDO M A, FORREST S R, LAMANSKY S, THOMPSON M E, KWONG R C. High-efficiency red electrophosphorescence devices[J]. Appl. Phys. Lett., 2001,78(11):1622-1624. doi: 10.1063/1.1355007

    27. [27]

      ZHANG H, SUN Y, CHEN Z, WANG W, WANG Q, CHEN S, XU Y, WONG W Y. Efficient deep red and NIR OLEDs based on Ir(Ⅲ) complexes fabricated by evaporation and solution processing[J]. Chem. Eng. J., 2023,451138632. doi: 10.1016/j.cej.2022.138632

    28. [28]

      PARK G Y, SEO J H, KIM Y K, KIM Y S. Iridium(Ⅲ) complexes with 6-pentafluorophenyl-2, 4-diphenylquinolines for red OLEDs[J]. Mol. Cryst. Liquid Cryst., 2007,471(1):293-303. doi: 10.1080/15421400701548530

    29. [29]

      PARK G Y, KIM I J, KIM Y S. Synthesis and photophysical studies of heteroleptic tris-cyclometalated Ir(Ⅲ) complex for red OLED[J]. Mol. Cryst. Liquid Cryst., 2007,471(1):235-244. doi: 10.1080/15421400701548316

    30. [30]

      SU N, YANG H Q, SHEN C Z, YAN Z P, CHEN Z X, ZHENG Y X. Rapid room temperature synthesis of red iridium(Ⅲ) complexes with Ir—S—P—S structures for efficient OLEDs[J]. J. Mater. Chem. C, 2019,7(23):6972-6977. doi: 10.1039/C9TC01564G

    31. [31]

      KIM H U, JANG J H, PARK H J, JUNG B J, SONG W, LEE J Y, HWANG D H. Highly efficient and spectrally stable white organic light-emitting diodes using new red heteroleptic iridium(Ⅲ) complexes[J]. Dyes Pigment., 2018,149:363-372. doi: 10.1016/j.dyepig.2017.10.022

    32. [32]

      BABU KAJJAM A, VAIDYANATHAN S. Acenaphthene-imidazole based red-to-NIR emissive homoleptic and heteroleptic Ir(Ⅲ) complexes for OLEDs: Combined experimental and theoretical approach[J]. Inorg. Chim. Acta, 2021,519120268. doi: 10.1016/j.ica.2021.120268

    33. [33]

      CHI H Y, JI Y, ZHANG Y K, ZHAO X M, QU S J, JIANG F D, LU C H, XIAO B, SONG M X, LI D F. Theoretical study of blue-green iridium(Ⅲ) complexes with low-efficiency roll-off properties for application in phosphorescent organic light-emitting diodes[J]. Appl. Organomet. Chem., 2024,38(2)e7322. doi: 10.1002/aoc.7322

    34. [34]

      ALI F, NAYAK P K, PERIASAMY N, AGARWAL N. Synthesis, photophysical, electrochemical and electroluminescence studies of red emitting phosphorescent Ir(Ⅲ) heteroleptic complexes[J]. J. Chem. Sci., 2017,129(9):1391-1398. doi: 10.1007/s12039-017-1350-y

    35. [35]

      LEE J, CHEN H F, BATAGODA T, COBURN C, DJUROVICH P I, THOMPSON M E, FORREST S R. Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency[J]. Nat. Mater., 2016,15(1):92-98. doi: 10.1038/nmat4446

    36. [36]

      MENNUCCI B, TOMASI J. Continuum solvation models: A new approach to the problem of solute's charge distribution and cavity boundaries[J]. J. Chem. Phys., 1997,106(12):5151-5158. doi: 10.1063/1.473558

    37. [37]

      HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. J. Chem. Phys., 1985,82(1):270-283. doi: 10.1063/1.448799

    38. [38]

      HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals[J]. J. Chem. Phys., 1985,82(1):299-310. doi: 10.1063/1.448975

    39. [39]

      WANG X L, YANG H Q, WEN Y P, WANG L, LI J F, ZHANG J L. Comprehension of the effect of a hydroxyl group in ancillary ligand on phosphorescent property for heteroleptic Ir(Ⅲ) complexes: A computational study using quantitative prediction[J]. Inorg. Chem., 2017,56(15):8986-8995. doi: 10.1021/acs.inorgchem.7b00946

    40. [40]

      WANG X L, CHEN C, LI Y Y, NING P, WU W P, WANG L. To design high efficient red-emitting iridium complexes by variation of ancillary ligand: Emissive rule and quantum yield[J]. Org. Electron., 2017,49:360-367. doi: 10.1016/j.orgel.2017.07.014

    41. [41]

      ZHANG Y, HENG P P, SU H S, LI J F, GUO J, NING P, WU W P, REN T G, WANG L, ZHANG J L. Star-shaped molecules as dopant-free hole transporting materials for efficient perovskite solar cells: Multiscale simulation[J]. Chem. Rec., 2019,19(5):938-946. doi: 10.1002/tcr.201800150

    42. [42]

      AVILOV I, MINOOFAR P, CORNIL J, DE COLA L. Influence of substituents on the energy and nature of the lowest excited states of heteroleptic phosphorescent Ir(Ⅲ) complexes: A joint theoretical and experimental study[J]. J. Am. Chem. Soc., 2007,129(26):8247-8258. doi: 10.1021/ja0711011

    43. [43]

      HUSH N S. Adiabatic rate processes at electrodes. Ⅰ. Energy-charge relationships[J]. J. Chem. Phys., 1958,28(5):962-972. doi: 10.1063/1.1744305

    44. [44]

      MARCUS R A. Electron transfer reactions in chemistry. Theory and experiment[J]. Rev. Mod. Phys., 1993,65(3):599-610. doi: 10.1103/RevModPhys.65.599

    45. [45]

      MARCUS R A. On the theory of oxidation-reduction reactions involving electron transfer[J]. J. Chem. Phys., 1956,24(5):966-978. doi: 10.1063/1.1742723

    46. [46]

      MALAGOLI M, BRÉDAS J L. Density functional theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules[J]. Chem. Phys. Lett., 2000,327(1/2):13-17.

    47. [47]

      LIN B C, CHENG C P, LAO Z P M. Reorganization energies in the transports of holes and electrons in organic amines in organic electroluminescence studied by density functional theory[J]. J. Phys. Chem. A, 2003,107(26):5241-5251. doi: 10.1021/jp0304529

    48. [48]

      SAKANOUE K, MOTODA M, SUGIMOTO M, SAKAKI S. A molecular orbital study on the hole transport property of organic amine compounds[J]. J. Phys. Chem. A, 1999,103(28):5551-5556. doi: 10.1021/jp990206q

    49. [49]

      FLAMIGNI L, BARBIERI A, SABATINI C, VENTURA B, BARIGELLETTI F. Photochemistry and photophysics of coordination compounds: Iridium[M]//BALZANI V, CAMPAGNA S. Photochemistry and photophysics of coordination compounds Ⅱ. Berlin, Heidelberg: Springer, 2007: 143-203

    50. [50]

      JOU J H, CHEN P W, CHEN Y L, JOU Y C, TSENG J R, WU R Z, HSIEH C Y, HSIEH Y C, JOERS P, CHEN S H, WANG Y S, TUNG F C, CHEN C C, WANG C C. OLEDs with chromaticity tunable between dusk-hue and candle-light[J]. Org. Electron., 2013,14(1):47-54. doi: 10.1016/j.orgel.2012.09.037

    51. [51]

      YU G, YIN S W, LIU Y Q, SHUAI Z G, ZHU D B. Structures, electronic states, and electroluminescent properties of a zinc(Ⅱ) 2-(2-hydroxyphenyl)benzothiazolate complex[J]. J. Am. Chem. Soc., 2003,125(48):14816-14824. doi: 10.1021/ja0371505

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    3. [3]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    4. [4]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    5. [5]

      Hao ZhuoMing ZhangHengyuan ZhangHui LinGang YangSilu TaoCaijun ZhengXiaohong Zhang . Modified triphenylamine donors with shallower HOMO energy levels to construct long-wavelength TADF emitters of efficient organic light-emitting diodes. Chinese Chemical Letters, 2025, 36(5): 110760-. doi: 10.1016/j.cclet.2024.110760

    6. [6]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    10. [10]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    11. [11]

      Yu-Jie LongXiao-Ni HanYing HanChuan-Feng Chen . Recent advances in supramolecular luminescent materials based on macrocyclic arenes. Chinese Chemical Letters, 2025, 36(6): 110600-. doi: 10.1016/j.cclet.2024.110600

    12. [12]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    13. [13]

      Lilin SongMengru SunYuqing SongFeng ZhangBei ZhaoHairong ZengJinhui ShiHuixin LiuShanshan ZhaoTian TianHeng YinGuangbo Ge . Rationally engineered IR-783 octanoate as an enzyme-activatable fluorogenic tool for functional imaging of hNotum in living systems. Chinese Chemical Letters, 2024, 35(11): 109601-. doi: 10.1016/j.cclet.2024.109601

    14. [14]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    15. [15]

      Ruike HuKangmin WangJunxiang LiuJingxian ZhangGuoliang YangLiqiu WanBijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113

    16. [16]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    17. [17]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    18. [18]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    19. [19]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    20. [20]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

Metrics
  • PDF Downloads(0)
  • Abstract views(234)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return