Citation: Yanxi LIU, Mengjia XU, Haonan CHEN, Quan LIU, Yuming ZHANG. A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423 shu

A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells

Figures(12)

  • Here, we report a near-infrared fluorescent probe, NSHD, which can be easily obtained through a one-step synthesis from a commercial dye. It quickly responded to peroxynitrite anion (ONOO-) both in fluorescence and in colorimetric manners, with negligible interference from other common biological relative species or pH variations under physiological conditions. A good linear relationship was observed between emission intensity and concentration of ONOO- in a range of 0-20 μmol·L-1. The results of MS tests indicated that oxidative cleavages occurred upon ONOO- exposure, resulting in changes to probe emission and color. NSHD successfully imaged the fluctuations of ONOO- in living HeLa cells (human cervical cancer cells), treated by SIN-1 (3-morpholinosydnonimine) or co-incubated by LPS (lipopolysaccharide) and IFN-γ (interferon-γ).
  • 加载中
    1. [1]

      HAN H H, SEDGWICK A C, SHANG Y, LI N, LIU T T, LI B H, YU K Q, ZANG Y, BREWSTER J T, ODYNIEC M L, WEBER M. Protein encapsulation: A new approach for improving the capability of small-molecule fluorogenic probes[J]. Chem. Sci, 2020,11(4):1107-1113. doi: 10.1039/C9SC03961A

    2. [2]

      WEI L C, ZHANG P, YU T, REN N X, CHEN J, YANG F T, SHU W. A highly sensitive and specific fluorescent probe for detecting ONOOin liver-injured cells and tissues[J]. Microchem. J., 2024,205111209. doi: 10.1016/j.microc.2024.111209

    3. [3]

      FERRER-SUETA G, RADI R. Chemical biology of peroxynitrite: Kinetics, diffusion, and radicals[J]. ACS Chem. Biol., 2009,4(3):161-177. doi: 10.1021/cb800279q

    4. [4]

      BARTESAGHI S, RADI R. Fundamentals on the biochemistry of per-oxynitrite and protein tyrosine nitration[J]. Redox Biol., 2018,14:618-625. doi: 10.1016/j.redox.2017.09.009

    5. [5]

      WU G L, LI Z H, HUANG P, L IN, W Y. Shedding light on ONOOdetection: The emergence of a fast-response fluorescent probe for biological systems[J]. J. Mater. Chem. B, 2024,12(14):3436-3444. doi: 10.1039/D3TB02994H

    6. [6]

      CHAN P H. Oxygen radicals in focal cerebral ischemia[J]. Brain Pathol., 1994,4(1):59-65. doi: 10.1111/j.1750-3639.1994.tb00811.x

    7. [7]

      JOO Y B, PARK K S. Gold thread acupuncture for rheumatoid arthritis[J]. N. Engl. J. Med., 2017,377(19)e27. doi: 10.1056/NEJMicm1706737

    8. [8]

      GRAHAM P M, LI J Z, DOU X G, ZHU H, MISRA H P, JIA Z Q, LI Y B. Protection against peroxynitrite-induced DNA damage by mesalamine: Implications for anti-inflammation and anti-cancer activity[J]. Mol. Cell. Biochem., 2013,378:291-298. doi: 10.1007/s11010-013-1620-z

    9. [9]

      CHENG D, XU W, YUAN L, ZHANG X B. Investigation of drug-induced hepatotoxicity and its remediation pathway with reaction-based fluorescent probes[J]. Anal. Chem., 2017,89(14):7693-7700. doi: 10.1021/acs.analchem.7b01671

    10. [10]

      AHMAD R, RASHEED Z, AHSAN H. Biochemical and cellular toxicology of peroxynitrite: Implications in cell death and autoimmune phenomenon[J]. Immunopharmacol. Immunotoxicol., 2009,31(3):388-396. doi: 10.1080/08923970802709197

    11. [11]

      NAGANO T. Bioimaging probes for reactive oxygen species and reactive nitrogen species[J]. J. Clin. Biochem. Nutr., 2009,45(2):111-124. doi: 10.3164/jcbn.R09-66

    12. [12]

      ZHU H, FAN J L, XU Q L, LI H L, WANG J Y, GAO P, PENG X J. Imaging of lysosomal pH changes with a fluorescent sensor containing a novel lysosome-locating group[J]. Chem. Commun., 2012,48(96):11766-11768. doi: 10.1039/c2cc36785h

    13. [13]

      VASILESCU A, GHEORGHIU M, PETEU S. Nanomaterial-based electrochemical sensors and optical probes for detection and imaging of peroxynitrite: A review[J]. Microchim. Acta, 2017,184:649-675. doi: 10.1007/s00604-017-2093-7

    14. [14]

      CHEN Y R, CHEN C L, CHEN W G, ZWEIER J L, AUGUSTO O, RADI R, MASON R P. Formation of protein tyrosine ortho-semiquinone radical and nitrotyrosine from cytochrome c-derived tyrosyl radical[J]. J. Biol. Chem., 2004,279(17):18054-18062. doi: 10.1074/jbc.M307706200

    15. [15]

      DAIBER A, OELZE M, AUGUST M, WENDT M, SYDOW K, WIEBOLDT H, KLESCHYOV A L, MUNZEL T. Detection of superoxide and peroxynitrite in model systems and mitochondria by the luminol analogue L-012[J]. Free Radic. Res., 2004,38(3):259-269. doi: 10.1080/10715760410001659773

    16. [16]

      MOUITHYS-MICKALAD A, HANS P, DEBY-DUPONT G, HOEBEKE M, DEBY C, LAMY M. Propofol reacts with peroxynitrite to form a phenoxyl radical: Demonstration by electron spin resonance[J]. Biochem. Biophys. Res. Commun., 1998,249(3):833-837. doi: 10.1006/bbrc.1998.9235

    17. [17]

      AMATORE C, ARBAULT S, BRUCE D, DE OLIVEIRA P, ERARD M, VUILLAUME M. Characterization of the electrochemical oxidation of peroxynitrite: Relevance to oxidative stress bursts measured at the single cell level[J]. Chem.-Eur. J., 2001,7(19):4171-4179. doi: 10.1002/1521-3765(20011001)7:19<4171::AID-CHEM4171>3.0.CO;2-5

    18. [18]

      TSIKAS D. GC-MS and HPLC methods for peroxynitrite (ONOO- and O15 NOO-) analysis: A study on stability, decomposition to nitrite and nitrate, laboratory synthesis, and formation of peroxynitrite from S-nitrosoglutathione (GSNO) and KO2[J]. Analyst, 2011,136(5):979-987. doi: 10.1039/C0AN00625D

    19. [19]

      IMARAM W, GERSCH C, KIM K M, JOHNSON R J, HENDERSON G N, ANGERHOFER A. Radicals in the reaction between peroxynitrite and uric acid identified by electron spin resonance spectroscopy and liquid chromatography mass spectrometry[J]. Free Radic. Biol. Med., 2010,49(2):275-281. doi: 10.1016/j.freeradbiomed.2010.04.010

    20. [20]

      LI X H, GAO X H, SHI W, MA H M. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes[J]. Chem. Rev., 2014,114(1):590-659. doi: 10.1021/cr300508p

    21. [21]

      YAN J L, LIU S S, WU W N, ZHAO X L, FAN Y C, WANG Y, XU Z H. A dihydro-benzo[4, 5] imidazo[1, 2-c] quinazoline-based probe with aggregation-induced ratiometric emission for the ratiometric fluorescent detection of peroxynitrite in living cells and zebrafish[J]. Anal. Methods, 2023,15(40):5311-5315. doi: 10.1039/D3AY01416A

    22. [22]

      CHENG D, GONG X Y, WU Q, YUAN J, LV Y, YUAN L, ZHANG X B. High-selectivity fluorescent reporter toward peroxynitrite in a coexisting nonalcoholic fatty liver and drug-induced liver diseases model[J]. Anal. Chem., 2020,92(16):11396-11404. doi: 10.1021/acs.analchem.0c02277

    23. [23]

      CHEN X, LI S Y, WANG Y, WU W N, CHEN Z. Preparation of a Schiff base Al3+ fluorescent probe and cellular imaging applications[J]. Chinese J. Inorg. Chem., 2022,38(10):1993-1998. doi: 10.11862/CJIC.2022.190

    24. [24]

      ZHANG C L, ZHANG J J, SHEN Y, LU J C, HUANG F, XU L. A fast-response mitochondria-targeted fluorescent probe for the detection of hypochlorite in living cells and zebrafish[J]. Chinese J. Inorg. Chem., 2022,38(8):1623-1632. doi: 10.11862/CJIC.2022.168

    25. [25]

      MYOCHIN T, KIYOSE K, HANAOKA K, KOJIMA H, TERAI T, NAGANO T. Rational design of ratiometric near-infrared fluorescent pH probes with various pKa values, based on aminocyanine[J]. J. Am. Chem. Soc., 2011,133(10):3401-3409. doi: 10.1021/ja1063058

    26. [26]

      LI X Y, HU Y M, LI X H, MA H M. Mitochondria-immobilized near-infrared ratiometric fluorescent pH probe to evaluate cellular mitophagy[J]. Anal. Chem., 2019,91(17):11409-11416. doi: 10.1021/acs.analchem.9b02782

    27. [27]

      ZHANG Y M, CHEN Y C, FANG H B, SHI X C, YUAN H, BAI Y, HE W J, GUO Z J. A ratiometric fluorescent probe for imaging enzyme dependent hydrogen sulfide variation in the mitochondria and in living mice[J]. Analyst, 2020,145(15):5123-5127. doi: 10.1039/D0AN00910E

    28. [28]

      LIU X L, GU F Y, ZHOU X Y, ZHOU W, ZHANG S P, CUI L, GUO T. A naphthalimide-based turn-on fluorescence probe for peroxynitrite detection and imaging in living cells[J]. RSC Adv., 2020,10(63):38281-38286. doi: 10.1039/D0RA06564A

    29. [29]

      CHAI X Z, LI B H, CHEN C, ZHANG W J, SUN L L, HAN H H, ZHANG Y F, SUN S S, YANG J M, ZHANG J J, HE X P. A highly sensitive and selective near-infrared fluorescent probe for imaging peroxynitrite in living cells and drug-induced liver injury mice[J]. Anal. Chem., 2023,95(13):5747-5753. doi: 10.1021/acs.analchem.3c00007

    30. [30]

      KHAN A, MEENA V K, SILSWAL A, KONER A L. A per-ylenemonoimide-based fluorescent probe: Ultrasensitive and selective tracing of endogenous peroxynitrite in living cells[J]. Analyst, 2023,148(23):5851-5855. doi: 10.1039/D3AN01469J

    31. [31]

      JAIN N, SONAWANE P M, ROYCHAUDHURY A, PARK S J, AN J, KIM C H, NIMSE S B, CHURCHILL D G. An indole-based near-infrared fluorescent"turn-on"probe for H2O2: Selective detection and ultrasensitive imaging of zebrafish gallbladder[J]. Talanta, 2024,269125459. doi: 10.1016/j.talanta.2023.125459

    32. [32]

      SINGH R J, HOGG N, JOSEPH J, KONOREV E, KALYANARAMAN B. The peroxynitrite generator, SIN-1, becomes a nitric oxide donor in the presence of electron acceptors[J]. Arch. Biochem. Biophys., 1999,361(2):331-339. doi: 10.1006/abbi.1998.1007

    33. [33]

      HOU X F, XUE Y L, YANG J G, LI Z S, XU Z H, LI W, YUAN L. A cascade activation probe with double-enhanced near-infrared imaging for monitoring peroxynitrite fluctuations in vivo[J]. Anal. Chem., 2024,96(44):17657-17664. doi: 10.1021/acs.analchem.4c03685

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    6. [6]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    7. [7]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    10. [10]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    11. [11]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    12. [12]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    13. [13]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    14. [14]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    17. [17]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    18. [18]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    19. [19]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    20. [20]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

Metrics
  • PDF Downloads(1)
  • Abstract views(252)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return