Citation: Junjie TANG, Yunting ZHANG, Zhengjiang LIU, Jiani WU. Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420 shu

Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange

  • Corresponding author: Zhengjiang LIU, zhengjliu@imut.edu.cn
  • Received Date: 29 November 2024
    Revised Date: 23 June 2025

Figures(15)

  • CeO2 non-homogeneous Fenton catalyst (ST-CeO2) was prepared from Ce(NO3)3·6H2O and soluble starch (ST) via the biotemplating method. It was characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, solid UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), and X-ray photoelectron spectroscopy (XPS). FTIR and Raman spectra confirmed Ce—O bonds and oxygen vacancies. UV-Vis DRS showed strong absorption in the UV and visible light regions. XPS revealed mixed Ce3+ and Ce4+ valence states on the surface, benefiting charge separation and H2O2 activation. MO degradation tests showed that under UV light for 60 min, ST-CeO2 achieved an 82.8% MO degradation rate. With H2O2 added, the 60-min degradation rate reached 99.7%, and it still maintained excellent catalytic performance after recycling five times. Radical scavenging tests proved that hole (h+) and hydroxyl radical (·OH) were the main active species in MO degradation, with superoxide radical (·O2-) playing a secondary role. Also, the mechanism of ST-CeO2 in MO-dye photocatalytic Fenton degradation was explored.
  • 加载中
    1. [1]

      YANG X G, WANG D W. Photocatalysis: From fundamental principles to materials and applications[J]. ACS Appl. Energy Mater., 2018,1(12):6657-6693.

    2. [2]

      HASAN M, SHENASHEN M A, HASAN M N, ZNAD H, SALMAN M S, AWUAL R. Natural biodegradable polymeric bioadsorbents for efficient cationic dye encapsulation from wastewater[J]. J. Mol. Liq., 2020,323114587.

    3. [3]

      AO C H, ZHAO J Q, LI Q Y, ZHANG J, HUANG B X, WANG Q H, GAI J G, CHEN Z M, ZHANG W, LU C H. Biodegradable all-cellulose composite membranes for simultaneous oil/water separation and dye removal from water[J]. Carbohydr. Polym., 2020,250116872.

    4. [4]

      LI Z C, HANAFY H, ZHANG L, SELLAOUID L, NETTO M, OLIVEIRA M, SLIEM M, DOTTO G, BONILLA-PETRICIOLET A, LI Q. Adsorption of Congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations[J]. Chem. Eng. J., 2020,388(15)124263.

    5. [5]

      SANTOSO E, EDIATI R, KUSUMAWATI Y, BAHRUJI H, SULISTIONO D, PRASETYOKO D. Review on recent advances of carbon based adsorbent for methylene blue removal from waste water[J]. Mater. Today Chem., 2020,16100233.

    6. [6]

      MUDHOO A, PALIYA S, GOSWAMI P, SINGH M, LOFRANO G, CAROTENUTO M, CARRATURO F, LIBRALATO G, GUIDA M, USMAN M, KUMAR S. Fabrication, functionalization and performance of doped photocatalysts for dye degradation and mineralization: A review[J]. Environ. Chem. Lett., 2020,18:1-79.

    7. [7]

      OLIVER J, PRASANNA K. Utilization of shell-based agricultural waste adsorbents for removing dyes: A review[J]. Chemosphere, 2022,291132737.

    8. [8]

      SHARMILA G, MUTHUKUMARAN C, SARASWATHI H, SANGEETHA E, SOUNDARYA S, KUMAR N. Green synthesis, characterization and biological activities of nanoceria[J]. Ceram. Int., 2019,45:12382-12386.

    9. [9]

      AHMED H, IQBAL Y, AZIZ M, ATIF M, BATOOL Z, HANIF A, YAQUB N, FAROOQ W, AHMAD S, FATEHMULLA A, AHMAD H. Green synthesis of CeO2 nanoparticles from the Abelmoschus esculentus extract: Evaluation of antioxidant, anticancer, antibacterial, and wound-healing activities[J]. Molecules, 2021,264659.

    10. [10]

      MAQBOOL Q, NAZAR M, NAZ S, HUSSAIN T, JABEEN N, KAUSAR R, ANWAAR S, ABBAS F, JAN T. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract[J]. Int. J. Nanomed., 2016,11:5015-5025.

    11. [11]

      YANG Q, WANG S N, CHEN F, LUO K, SUN J, GONG C, YAO F B, WANG X L, WU J W, LI X M, WANG D B, ZENG G M. Enhanced visible-light-driven photocatalytic removal of refractory pollutants by Zn/Fe mixed metal oxide derived from layered double hydroxide[J]. Catal. Commun., 2017,99(8):15-19.

    12. [12]

      YANG H, XU B, ZHANG Q T, YUAN S S, ZHANG Z P, LIU Y T, NAN Z D, ZHANG M, TERUHISA O. Boosting visible-light-driven photocatalytic performance of waxberry-like CeO2 by samarium doping and silver QDs anchoring[J]. Appl. Catal. B-Environ., 2021,286119845.

    13. [13]

      ASLAM M, QAMAR M, SOOMRO M, ISMAIL I, SALAH N, ALMEELBI T, GONDAL M, HAMEED A. The effect of sunlight induced surface defects on the photocatalytic activity of nanosized CeO2 for the degradation of phenol and its derivatives[J]. Appl. Catal. B-Environ., 2016,180:391-402.

    14. [14]

      HKIRI K, MOHAMED H, GHOTEKAR S, MAAZA M. Green synthesis of cerium oxide nanoparticles using Portulaca oleracea extract: Photocatalytic activities[J]. Inorg. Chem. Commun., 2024,162112243.

    15. [15]

      QIAN J C, CHEN Z G, SUN H, CHEN F, XU X, WU Z Y, LI P, GE W J. Enhanced photocatalytic H2 production on three-dimensional porous CeO2/carbon nanostructure[J]. ACS Sustain. Chem. Eng., 2018,6(8):9691-9698.

    16. [16]

      YANG C M, LU Y X, ZHANG L, KONG Z J, YANG T Y, TAO L, ZOU Y Q, WANG S Y. Defect engineering on CeO2-based catalysts for heterogeneous catalytic applications[J]. Small Struct., 2021,2(12)2100058.

    17. [17]

      YANG J D, XIE N, ZHANG J N, FAN J N, HUANG Y C, TONG Y X. Defect engineering enhances the charge separation of CeO2 nanorods toward photocatalytic methyl blue oxidation[J]. Nanomaterials, 2020,10(11)2307.

    18. [18]

      CHATTERJEE D, DASGUPTA S. Visible light induced photocatalytic degradation of organic pollutants[J]. J. Photochem. Photobiol. C-Photochem. Rev., 2005,6(2/3):186-205.

    19. [19]

      FENG J C, RONG J, ZHANG Y Z, ZHENG X D, LI X Z, XU S, LI Z. An S-scheme CeO2/foveolate g-C3N4 composite with horseradish peroxidase activity for photo-enzyme synergistic catalytic degradation of phenanthrene[J]. Appl. Catal. B-Environ., 2023,337123005.

    20. [20]

      ZHAO D, LIANG F X, FENG R J, JU J. Preparation and photocatalytic properties of CeO2 with different morphologies[J]. Mod. Chem. Ind., 2020,40(S1):203-206.

    21. [21]

      ZHOU J Y, ZHU B B. Novel 1D/3D CeO2/g-C3N4 catalysts for photodegradation of ciprofloxacin under visible light via dimensional regulation and heterostructure construction[J]. J. Phys. Chem. Solids, 2022,171(12)111002.

    22. [22]

      YAN P, HU X M, QI Y. Preparation of Sm-Gd-doped and ceria-based nanopowder[J]. Journal of Northeastern University (Natural Science), 2009,30(12):1759-1762.

    23. [23]

      SAYLE T, PARKER S, CATLOW C. Surface oxygen vacancy formation on CeO2 and its role in the oxidation of carbon monoxide[J]. J. Chem. Soc.-Chem. Commun., 1992,976:977-978.

    24. [24]

      LV Z, ZHONG Q, OU M. Utilizing peroxide as precursor for the synthesis of CeO2/ZnO composite oxide with enhanced photocatalytic activity[J]. Appl. Surf. Sci., 2016,376(15):91-96.

    25. [25]

      KURIAN M. Cerium oxide based materials for water treatment-A review[J]. J. Environ. Chem. Eng., 2020,8(5)104439.

    26. [26]

      KAPLIN I, LOKTEVA E, GOLUBINA E, LUNIN V. Template synthesis of porous ceria-based catalysts for environmental application[J]. Molecules, 2020,25(18)4242.

    27. [27]

      ARABACI A. Effect of the calcination temperature on the properties of Sm-doped CeO2[J]. Emerg. Mater. Res., 2020,9(2):296-301.

    28. [28]

      NOVAK T, BALOW R, BUCK M, ROLISON D, DESARIO P. Dark and UV-enhanced degradation of dimethyl methyl phosphonate on mesoporous CeO2 aerogels[J]. ACS Appl. Nano Mater., 2023,6(4):3075-3084.

    29. [29]

      LI X D, LI J G, HUO D, XIU Z M, SUN X D. Facile synthesis under near-atmospheric conditions and physicochemical properties of hairy CeO2 nanocrystallines[J]. J. Phys. Chem. C, 2009,113(5):1806-1811.

    30. [30]

      TROVARELLI A. Catalytic properties of ceria and CeO2-containing materials[J]. Catal. Rev., 2002,44(4):375-423.

    31. [31]

      HARISH B M, RAJEEVA M, CHATURMUKHA V, SURESHA S, JAYANNA H, YALLAPPA S, LAMANI A. Influence of zinc on the structural and electrical properties of cerium oxide nanoparticles[J]. Mater. Today, 2018,5:3070-3077.

    32. [32]

      YU X F, LIU J W, CONG H P, XUE L, MUHANMMAD N A, HASSAN A A, TARIQ R S, GAO Q, YU S H. Template and surfactant-free synthesis of ultrathin CeO2 nanowires in a mixed solvent and their superior adsorption capability for water treatment[J]. Chem. Sci., 2015,6:2511-2515.

    33. [33]

      CHEN Y, LONG R W, CHEN Z G. Synthesis and characterization of CeO2 hollow nanospheres[J]. J. Chin. Ceram. Soc., 2010,38(2):265-270.

    34. [34]

      GAO Y X. Structure-activity relation of CeO2 nanocrystal and its supported catalysts in different catalytic reactions[D]. Hefei: University of Science and Technology of China, 2015: 113-114

    35. [35]

      XIONG Z B, LI Z Z, DU Y P, LI C X, LU W, TIAN S L. Starch bio-template synthesis of W-doped CeO2 catalyst for selective catalytic reduction of NOx with NH3: Influence of ignition temperature[J]. Environ. Sci. Pollut. Res. Int., 2021,28(5):5914-5926.

    36. [36]

      SIFONTES A, GONZALEZ G, OCHOA J, TOVAR L, ZOLTAN T, CANIZALES E. Chitosan as template for the synthesis of ceria nanoparticles[J]. Mater. Res. Bull., 2011,46(11):1794-1799.

    37. [37]

      ZHAO G Z, LI C B, ZAHNG H L. Honeycomb nano cerium oxide fabricated by vacuum drying process with sodium alginate[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2017,207012001.

    38. [38]

      WU T S, SYU L Y, LIN C N, LIN B S, LIAO T H, WENG S C, HUANG Y J, JENG H T, LU S Y, CHANG S L, SOO Y L. Enhancement of catalytic activity by UV-light irradiation in CeO2 nanocrystals[J]. Sci. Rep., 2019,98018.

    39. [39]

      TAN C W, ZHU G Q, HOJAMBERDIEV M, OKADA K, LIANG J, LUO X C, LIU P, LIU Y. Co3O4 nanoparticles-loaded BiOCl nanoplates with the dominant {001} facets: Efficient photodegradation of organic dyes under visible light[J]. Appl. Catal. B-Environ., 2014,152:425-436.

    40. [40]

      CHEN M, WANG X, YU Y H, PEI Z L, BAI X D, SUN C, HUANG R F, WEN L S. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films[J]. Appl. Surf. Sci., 2000,158:134-140.

    41. [41]

      YOUNIS A, CHU D W, KANETI Y V. Tuning the surface oxygen concentration of {111} surrounded ceria nanocrystals for enhanced photocatalytic activities[J]. Nanoscale, 2016,8:378-387.

    42. [42]

      HARTMANN P, BREZESINSKI T, SANN J, LOTNYK A, EUFINGER J, KIENLE L, JANEK J. Defect chemistry of oxide nanomaterials with high surface area: Ordered mesoporous thin films of the oxygen storage catalyst CeO2-ZrO2[J]. ACS Nano, 2013,7:2999-3013.

    43. [43]

      WANG S Y, QIAO Z P, WANG W, QIAN Y T. XPS studies of nanometer CeO2 thin films deposited by pulse ultrasonic spray pyrolysis[J]. J. Alloy. Compd., 2000,305(1/2):121-124.

    44. [44]

      YU K L, RUAN G L, BEN Y H, ZOU J J. Convenient synthesis of CeO2 nanotubes[J]. Mater. Sci. Eng. B, 2007,139(2/3):197-200.

    45. [45]

      FU H X, ZHANG D S, SHI L Y, FANG J H. Synthesis and characterization of cerium oxide nanotubes based on carbon nanotubes[J]. Chem. J. Chinese Universities, 2007,28(4):617-220.

    46. [46]

      YANG X, LIU Y, LI J, ZHANG Y L. Effects of calcination temperature on morphology and structure of CeO2 nanofibers and their photocatalytic activity[J]. Mater. Lett., 2019,241(15):76-79.

    47. [47]

      SIDDIQUI H, KUMAR S, NAIDU P, GUPTA S, MISHRA S, GOSWAMI M, SAIRKAR P, ATRAM L, SATHISH N, KUMAR S. Solanum tuberosum tuber-driven starch-mediated green-hydrothermal synthesis of cerium oxide nanoparticles for efficient photocatalysis and antimicrobial activities[J]. Chemosphere, 2024,352141418.

    48. [48]

      LI H B, WANG L, WEI Y F, YAN W, FENG J T. Preparation of templated materials and their application to typical pollutants in wastewater: A review[J]. Front. Chem., 2022,1082876.

    49. [49]

      CAI J, LI D Y, YUAN J Y, LI Z Q, LI K Z. Review on CeO2-based photocatalysts for photocatalytic reduction of CO2: Progresses and perspectives[J]. Energy Fuels, 2023,37(7):4878-4897.

    50. [50]

      LI Q Q, SONG L P, LIANG Z, SUN M Z, WU T, HUANG B L, LUO F, DU Y P, YAN C H. A review on CeO2-based electrocatalyst and photocatalyst in energy conversion[J]. Adv. Energy Sustain. Res., 2021,2(2)2000063.

    51. [51]

      TROVARELLI A. Catalytic properties of ceria and CeO2-containing materials[J]. Sci. Eng., 1996,38(4):439-520.

    52. [52]

      YANG Y F, ZHOU M, LIU C L, WANG Y P. Staphylococcus albus assisted synthesis of porous ceria arrays[J]. J. Funct. Mater., 2012,43(15):2106-2110.

    53. [53]

      CHEN A L, LONG R W, LU J X. Synthesis, characterization and decolorizing performance of porous ceria hollow microspheres[J]. The Chinese Journal of Nonferrous Metals, 2011,21(4):810-814.

    54. [54]

      SHI R J, LIU J L, CUI Y M, ZHU Y. Synthesis of CeO2 nanosphere photocatalyst and its performance for degradation of MO[J]. Journal of Fuyang Normal University (Natural Science), 2015,32(2):41-45.

    55. [55]

      WANG Z M, ZHU X L, LI Y M, SHEN Z Y, ZUO J L. Controllable preparation and photocatalytic properties of nano-CeO2 sphere and sheet[J]. Journal of Synthetic Crystals, 2017,46(8):1559-1563.

    56. [56]

      GILANI S, NASEEB F, KIRAN A, IHSAN M, IQBAL J, JAVED H, BHATTI H, KARAMI A, HUSSAIN A, MAHR M. pH dependent synthesis of ceria nanoparticles for efficient sunlight-driven photocatalysis of methyl orange containing wastewater[J]. Opt. Mater., 2024,148114871.

    57. [57]

      HUSSEIN F H, ALKAIM A. Effect of pH on adsorption and photocatalytic degradation efficiency of different catalysts on removal of methylene blue[J]. Asian J. Chem., 2014,26(24):8445-8448.

    58. [58]

      XU D Y, CHENG F, LU Q Z, DAI P. Microwave enhanced catalytic degradation of methyl orange in aqueous solution over CuO/CeO2 catalyst in the absence and presence of H2O2[J]. Ind. Eng. Chem. Res., 2014,53(7):2625-2632.

    59. [59]

      ZAVAHIR S, ELMAKKI T, ISMAIL N, GULIED M, PARK H, HAN D. Degradation of organic methyl orange (MO) dye using a photocatalyzed non-ferrous Fenton reaction[J]. Nanomaterials, 2023,13(4)639.

    60. [60]

      HEZAM A, NAMRATHA K, DRMOSH Q, PONNAMMA D, WANG J, PRASAD S, AHAMED M, CHENG C, BYRAPPA K. CeO2 nanostructures enriched with oxygen vacancies for photocatalytic CO2 reduction[J]. ACS Appl. Nano Mater., 2020,3(1):138-148.

    61. [61]

      TAN Z C, ZHANG J R, CHEN Y C, CHOU J P, PENG Y K. Unravelling the role of structural geometry and chemical state of well-defined oxygen vacancies on pristine CeO2 for H2O2 activation[J]. J. Phys. Chem. Lett., 2020,11(14):5390-5396.

    62. [62]

      SUN F K, SONG J, WEN H, CAO X, ZHAO F, QIN J H, MAO W W, TANG X Q, DONG L K, LONG Y. Ce4+/Ce3+ redox effect-promoted CdS/CeO2 heterojunction photocatalyst for the atom economic synthesis of imines under visible light[J]. Inorg. Chem., 2023,62(43):17961-17971.

    63. [63]

      CHEUNG P, WILLIAMS D, KIRK D, MURPHY P, BARTON S, BARKER J. Decolourisation of metal-azo dyes in wastewaters by sodium peroxodisulphate: A template for experimental investigations[J]. Open Environ. Res. J., 2023,16:2590-2776.

    64. [64]

      RETBOELL M, JOERGENSEN K. MO explanation of the structures of azo-transition metal complexes[J]. Inorg. Chem., 1994,33(26):6403-6405.

    65. [65]

      CHUEN W, MCDANIEL A, GRASS M, HAO Y, JABEEN N, LIU Z, HAILE S M, MCCARTY K, BLUHM H, GABALY F. Highly enhanced concentration and stability of reactive Ce3+ on doped CeO2 surface revealed in operando[J]. Chem. Mater., 2012,24(10):1876-1882.

    66. [66]

      LIU Y, CEN W L, WU Z B, WEN X L, WANG H Q. SO2 poisoning structures and the effects on pure and Mn doped CeO2: A first principles investigation[J]. J. Phys. Chem. C, 2012,116(43):22930-22937.

    67. [67]

      WANG Y C, SHEN X X, CHEN F. Improving the catalytic activity of CeO2/H2O2 system by sulfation pretreatment of CeO2[J]. J. Mol. Catal. A-Chem., 2014,381:38-45.

    68. [68]

      YUAN B, TAN Z C, GUO Q, SHEN X T, ZHAO C, CHEN J L, PENG Y K. Regulating the H2O2 activation pathway on a well-defined CeO2 nanozyme allows the entire steering of its specificity between associated enzymatic reactions[J]. ACS Nano, 2023,17(17):17383-17393.

    69. [69]

      MUTHUVEL I, SWAMINATHAN M. Photoassisted Fenton mineralization of acid violet 7 by heterogeneous Fe(Ⅲ)-Al2O3 catalyst[J]. Catal. Commun., 2007,8(7):981-986.

    70. [70]

      LINSEBIGLER A, LU G, YATES J. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results[J]. Chem. Rev., 1995,95(3):735-758.

    71. [71]

      NOSAKA Y, NOSAKA A. Generation and detection of reactive oxygen species in photocatalysis[J]. Chem. Rev., 2017,117(17):11302-11336.

    72. [72]

      LI M M, WANG P F, JI Z Z, ZHOU Z R, XIA Y G, LI Y, ZHAN S H. Efficient photocatalytic oxygen activation by oxygen-vacancy-rich CeO2-based heterojunctions: Synergistic effect of photoexcited electrons transfer and oxygen chemisorption[J]. Appl. Catal. B-Environ., 2021,289120020.

    73. [73]

      PIGNATELLO J. Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide[J]. Environ. Sci. Technol., 1992,26(5):944-951.

    74. [74]

      STOOKEY L. Ferrozine-A new spectrophotometric reagent for iron[J]. Anal. Chem., 1970,42(7):779-781.

    75. [75]

      HAO S Y, HOU J, PAOLO A, LV T X. Photocatalytic activity under weak visible light of Fe3+ doped mesoporous CeO2[J]. Ind. Eng. Chem. Res., 2014,53(38):14617-14622.

    76. [76]

      CODWIHOK C, WONGRATANAPHISAN D, TAM T, CHOI W, HUR S, CHUNG J. Cerium-oxide-nanoparticle-decorated zinc oxide with enhanced photocatalytic degradation of MO[J]. Appl. Sci., 2020,10(5)114773.

    77. [77]

      XIE J, HE Y W, WANG H, DUAN M, TANG J L, WANG Y Y, MOHAMAD C, WANG H. Photocatalytic degradation of binary dyes mixture over SrTiO3 synthesized using sodium carboxymethylcellulose additive[J]. Russ. Phys. Chem., 2018,92(4):809-815.

    78. [78]

      JI P F, ZHANG J L, CHEN F, MASAKAZU A. Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation[J]. Appl. Catal. B-Environ., 2009,85:148-154.

    79. [79]

      ZHANG S, LIU Y, GU P C, MA R, WEN T, ZHAO G X, LI L, AI Y J, HU C, WANG X K. Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: Mechanism exploration from both experimental and DFT studies[J]. Appl. Catal. B-Environ., 2019,248:1-10.

    80. [80]

      PIGNATELLO J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Crit. Rev. Environ. Sci. Technol., 2006,36(1):1-84.

    81. [81]

      DENG S, WANG H, DONG Y, CHENG W J, LIN X G, WU L X, HU J, LIU Y X, LI Y Y. Morphology effect on the photocatalytic performance of CeO2 and insights into the degradation mechanism of tetracycline[J]. J. Environ. Chem. Eng., 2025,13(1)115216.

    82. [82]

      MONTINI T, MELCHIONNA M, MONAI M, FOMASIERO P. Fundamentals and catalytic applications of CeO2-based materials[J]. Chem. Rev., 2016,116(10):5987-6041.

    83. [83]

      ZINATLOO-AJABSHIR S, MEHRABADI Z, KHOJASTEH H, SHARIFIANJAZI F. Innovative fabrication of highly efficient CeO2 ceramic nanomaterials for enhanced photocatalytic degradation of toxic contaminants under sunlight[J]. Ceram. Int., 2024,50(23):49263-49276.

    84. [84]

      CHEN X C, MAO S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications[J]. Chem. Rev., 2007,107(7):2891-2959.

    85. [85]

      XU C, QU X G. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications[J]. NPG Asia Mater., 2014,6:88-90.

  • 加载中
    1. [1]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    6. [6]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    8. [8]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    9. [9]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    10. [10]

      Meihong Luo Hongyu Wang . Teaching Reform of Benzoin Oxidation Experiment in the Context of Green Pharmaceutical Chemistry. University Chemistry, 2025, 40(5): 376-382. doi: 10.12461/PKU.DXHX202411055

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    13. [13]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    14. [14]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    15. [15]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    16. [16]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    18. [18]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(0)
  • Abstract views(4)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return