Citation: Nengmin ZHU, Wenhao ZHU, Xiaoyao YIN, Songzhi ZHENG, Hao LI, Zeyuan WANG, Wenhao WEI, Xuanheng CHEN, Weihai SUN. Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419 shu

Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method

  • Corresponding author: Weihai SUN, sunweihai@hqu.edu.cn
  • Received Date: 29 November 2024
    Revised Date: 23 March 2025

Figures(8)

  • The green solvent water was used to dissolve CsBr, to improve its solubility, simplify the preparation process of CsPbBr3 perovskite solar cells, and enhance the quality of thin films. The results showed that under the conditions of a residence time of 5 s and an annealing temperature of 250 ℃, the device prepared by spin coating a CsBr aqueous solution with a mass concentration of 250 mg·mL-1 had the best performance, achieving a maximum open circuit voltage (VOC) of 1.64 V, a short-circuit current density (JSC) of 7.55 mA·cm-2, a fill factor (FF) of 85.46%, and a photoelectric conversion efficiency (PCE) of 10.51%.
  • 加载中
    1. [1]

      KOJIMA A, TESHIMA K, SHIRAI Y, MIYASAKA T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131(17):6050-6051. doi: 10.1021/ja809598r

    2. [2]

      NREL. Interactive best research-cell efficiency chart[EB/OL]. [2025-03-27]. https://www.nrel.gov/pv/interactive-cell-efficiency.html

    3. [3]

      RONG Y G, LIU L F, MEI A Y, LI X, HAN H W. Beyond efficiency: The challenge of stability in mesoscopic perovskite solar cells[J]. Adv. Energy Mater., 2015,51501066. doi: 10.1002/aenm.201501066

    4. [4]

      TIEP N H, KU Z L, FAN H J. Recent advances in improving the stability of perovskite solar cells[J]. Adv. Energy Mater., 2016,6(3)1501420. doi: 10.1002/aenm.201501420

    5. [5]

      ZHOU Y Y, ZHAO Y X. Chemical stability and instability of inorganic halide perovskites[J]. Energy Environ. Sci., 2019,12:1495-1511. doi: 10.1039/C8EE03559H

    6. [6]

      PARK N G, GRÄTZEL M, MIYASAKA T, ZHU K, EMERY K. Towards stable and commercially available perovskite solar cells[J]. Nature Energy, 2016,1(11)16152. doi: 10.1038/nenergy.2016.152

    7. [7]

      KUMAR N, RANI J, KURCHANIA R. Advancement in CsPbBr3 inorganic perovskite solar cells: Fabrication, efficiency and stability[J]. Sol. Energy, 2021,221:197-205. doi: 10.1016/j.solener.2021.04.042

    8. [8]

      MA T Q, WANG S W, ZHANG Y W, ZHANG K X, YI L X. The development of all-inorganic CsPbX3 perovskite solar cells[J]. J. Mater. Sci., 2020,55(2):464-479. doi: 10.1007/s10853-019-03974-y

    9. [9]

      KULBAK M, CAHEN D, HODES G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells[J]. J. Phys. Chem. Lett., 2015,6(13):2452-2456. doi: 10.1021/acs.jpclett.5b00968

    10. [10]

      CHEN H N, XIANG S S, LI W P, LIU H C, ZHU L Q, YANG S H. Inorganic perovskite solar cells: A rapidly growing field[J]. Sol. RRL, 2018,2(2)1700188. doi: 10.1002/solr.201700188

    11. [11]

      HUANG D W, XIE P F, PAN Z X, RAO H S, ZHONG X H. One-step solution deposition of CsPbBr3 based on precursor engineering for efficient all-inorganic perovskite solar cells[J]. J. Mater. Chem. A, 2019,7:22420-22428. doi: 10.1039/C9TA08465G

    12. [12]

      GAO B W, MENG J. High efficiently CsPbBr3 perovskite solar cells fabricated by multi-step spin coating method[J]. Sol. Energy, 2020,211:1223-1229. doi: 10.1016/j.solener.2020.10.045

    13. [13]

      ZHOU Q, DUAN J, DU J, GUO Q, ZHANG Q, YANG X, DUAN Y, TANG Q. Tailored lattice"tape"to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1.702 V[J]. Adv. Sci., 2021,8(19)2101418. doi: 10.1002/advs.202101418

    14. [14]

      KIESLICH G, SUN S J, CHEETHAM A K. Solid-state principles applied to organic-inorganic perovskites: New tricks for an old dog[J]. Chem. Sci., 2014,5(12):4712-4715. doi: 10.1039/C4SC02211D

    15. [15]

      CHEN J J, FAN Z J, DONG J J. Research progress of green solvent in CsPbBr3 perovskite solar cells[J]. Nanomaterials, 2023,13(6)991. doi: 10.3390/nano13060991

    16. [16]

      WAN X J, YU Z, TIAN W M, HUANG F Z, JIN S Y, YANG X C, CHENG Y B, HAGFELDT A, SUN L C. Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology[J]. J. Energy Chem., 2020,46:8-15. doi: 10.1016/j.jechem.2019.10.017

    17. [17]

      GUO Y X, ZHAO F, TAO J H, JIANG J C, ZHANG J G, YANG J P, HU Z G, CHU J H. Efficient and hole-transporting-layer-free CsPbI2Br planar heterojunction perovskite solar cells through rubidium passivation[J]. ChemSusChem, 2019,12(5):983-989. doi: 10.1002/cssc.201802690

    18. [18]

      CAO X B, ZHANG G S, CAI Y F, LONG J, YANG W J, SONG W D, HE X, ZENG Q G, JIA Y, WEI J Q. A sustainable solvent system for processing CsPbBr3 films for solar cells via an anomalous sequential deposition route[J]. Green Chem., 2021,23(1):470-478. doi: 10.1039/D0GC02892D

    19. [19]

      FENG J, HAN X, HUANG H, MENG Q, ZHU Z, YU T, LI Z, ZOU Z. Curing the fundamental issue of impurity phases in two-step solution-processed CsPbBr3 perovskite films[J]. Sci. Bull., 2020,65(9):726-737. doi: 10.1016/j.scib.2020.01.025

    20. [20]

      CAO X B, ZHANG G S, CAI Y F, JIANG L, HE X, ZENG Q G, WEI J Q, JIA Y, XING G C, HUANG W. All green solvents for fabrication of CsPbBr3 films for efficient solar cells guided by the Hansen solubility theory[J]. Sol. RRL, 2020,4(4)2000008. doi: 10.1002/solr.202000008

    21. [21]

      ZHU C W, JIN Y N, ZHANG C H, CHEN H H, CHEN S T, FU Y M, WU Y J, SUN W H. Preparation of efficient and stable perovskite solar cells using green dual solvent method[J]. Chinese J. Inorg. Chem., 2023,39(6):1061-1071. doi: 10.11862/CJIC.2023.084

    22. [22]

      LIU X P, WU J H, GUO Q Y, YANG Y Q, LUO H, LIU Q Z, WANG X B, HE X, HUANG M L, LAN Z. Pyrrole: An additive for improving the efficiency and stability of perovskite solar cells[J]. J. Mater. Chem. A, 2019,7:11764-11770. doi: 10.1039/C9TA02916H

    23. [23]

      ZHANG Y F, LIANG Y Q, WANG Y J, GUO F W, SUN L C, XU D S. Planar FAPbBr 3 solar cells with power conversion efficiency above 10[J]. ACS Energy Lett., 2018,3(8):1808-1814. doi: 10.1021/acsenergylett.8b00540

    24. [24]

      XIANG X X, OUYANG H, LI J Z, FU Z F. Humidity-sensitive CsPbBr3 perovskite based photoluminescent sensor for detecting water content in herbal medicines[J]. Sens. Actuator B-Chem., 2021,346130547. doi: 10.1016/j.snb.2021.130547

    25. [25]

      WANG S B, CAO F X, SUN W H, WANG C Y, YAN Z L, WANG N, LAN Z, WU J H. A green Bi-solvent system for processing high-quality CsPbBr3 films in efficient all-inorganic perovskite solar cells[J]. Mater. Today Phys., 2022,22100614. doi: 10.1016/j.mtphys.2022.100614

    26. [26]

      XU P. All-inorganic perovskite CsPbI2Br as a promising photovoltaic absorber: A first-principles study[J]. J. Chem. Sci., 2020,132(1)74. doi: 10.1007/s12039-020-01780-7

    27. [27]

      LIANG K B, WU Y J, ZHEN Q S, ZOU Y, ZHANG X C, WANG C H, SHI P Y, ZHANG Y Y, SUN W H, LI Y L, WU J H. Solvent vapor annealing-assisted mesoporous PbBr2 frameworks for high-performance inorganic CsPbBr3 perovskite solar cells[J]. Surf. Interfaces, 2023,37102707. doi: 10.1016/j.surfin.2023.102707

    28. [28]

      DU J, DUAN J L, DUAN Y Y, TANG Q W. Tailoring organic bulk-heterojunction for charge extraction and spectral absorption in CsPbBr3 perovskite solar cells[J]. Sci. China Mater., 2021,64(4):798-807. doi: 10.1007/s40843-020-1499-8

    29. [29]

      LU K Y, WANG Y J, YUAN J Y, CUI Z Q, SHI G Z, SHI S H, LU H, CHEN S, ZHANG Y N, LING X F, LIU Z K, CHI L F, FAN J, MA W L. Efficient PbS quantum dot solar cells employing a conventional structure[J]. J. Mater. Chem. A, 2017,5(45):23960-23966. doi: 10.1039/C7TA07014D

    30. [30]

      XIE F X, CHEN C C, WU Y Z, LI X, CAI M L, LIU X, YANG X D, HAN L Y. Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells[J]. Energy Environ. Sci., 2017,10(9):1942-1949. doi: 10.1039/C7EE01675A

    31. [31]

      BLOM P W M, MIHAILETCHI V D, KOSTER L J A, MARKOV D E. Device physics of polymer: Fullerene bulk heterojunction solar cells[J]. Adv. Mater., 2007,19(12):1551-1566. doi: 10.1002/adma.200601093

    32. [32]

      LI X, TAN Y, LAI H, LI S P, CHEN Y, LI S W, XU P, YANG J Y. All-inorganic CsPbBr3 perovskite solar cells with 10.45% efficiency by evaporation-assisted deposition and setting intermediate energy levels[J]. ACS Appl. Mater. Interfaces, 2019,11(33):29746-29752. doi: 10.1021/acsami.9b06356

    33. [33]

      WANG Z Y, ZHENG S Z, LI H, WENG J B, WANG W, WANG Y, SUN W H. Effect of I 2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells[J]. Chinese J. Inorg. Chem., 2024,40(7):1290-1300. doi: 10.11862/CJIC.20240021

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    3. [3]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    4. [4]

      Sheng TangMingyue LiaoWeihai SunJihuai WuJiamin LuYiming Xie . Optimizing CsPbBr3 perovskite solar cell interface and performance through tetraphenylethene derivatives. Chinese Chemical Letters, 2025, 36(6): 110838-. doi: 10.1016/j.cclet.2025.110838

    5. [5]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    6. [6]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    7. [7]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    8. [8]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    9. [9]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    10. [10]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    11. [11]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Le HanZhou YuanBohan LiYuchi ZhangLin YangYan Xu . Highly-stable cesium lead halide perovskite CsPbBr3/CsPb2Br5 heteronanocrystals in zeolitic imidazolate framework-8 for antibiotic photodegradation. Chinese Chemical Letters, 2025, 36(6): 110349-. doi: 10.1016/j.cclet.2024.110349

    14. [14]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Chao Liu Huan Yu Jiaming Li Xi Yu Zhuangzhi Yu Yuxi Song Feng Zhang Qinfang Zhang Zhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-. doi: 10.1016/j.actphy.2025.100075

    17. [17]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    18. [18]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    19. [19]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    20. [20]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

Metrics
  • PDF Downloads(0)
  • Abstract views(248)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return