Citation: Qilin YU, Yifei XU, Pengjun ZHANG, Shuwei HAO, Chongqiang ZHU, Chunhui YANG. Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418 shu

Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+

  • Corresponding author: Chongqiang ZHU, zcq90@hit.edu.cn
  • Received Date: 28 November 2024
    Revised Date: 8 May 2025

Figures(9)

  • A series of Cs2NaBiCl6: Mn2+and Cs2Na1-xKxBiCl6: Mn2+ phosphors were synthesized using a solvothermal method. Crystal structures and optical properties were systematically studied through theoretical calculations and experimental measurements. The results showed that in the Cs2NaBiCl6: Mn2+ system, localized excitation absorption near ultraviolet light centered on the [BiCl6]3- octahedron was observed. With the increase of Mn2+ doping concentration, energy transfer from [BiCl6]3- to Mn2+ promoted electronic transitions between the d orbitals of Mn2+ and produced orange-yellow luminescence. After further introducing K+, the photoluminescence (PL) intensity and color purity of Cs2NaBiCl6: Mn2+ were enhanced. It was confirmed that the introduction of K+ effectively tuned the density of states composition of Cs2NaBiCl6: Mn2+ and promoted the 1S03P1, 2 electron transition of [BiCl6]3-, thus enhancing the PL intensity of Cs2NaBiCl6: Mn2+, and the color purity was calculated to be 93.58% using CIE software. The final results suggested that Cs2Na1-xKxBiCl6: Mn2+ had strong orange-yellow luminescent properties.
  • 加载中
    1. [1]

      LAMBA R S, BASERA P, BHATTACHARYA S, SAPRA S. Band gap engineering in Cs2(NaxAg1-x)BiCl6 double perovskite nanocrystals[J]. J. Phys. Chem. Lett., 2019,10(17):5173-5181. doi: 10.1021/acs.jpclett.9b02168

    2. [2]

      CHENG X W, XIE Z, ZHENG W, LI R F, DENG Z H, TU D T, SHANG X Y, XU J, GONG Z L, LI X J, CHEN X Y. Boosting the self-trapped exciton emission in alloyed Cs2(Ag/Na)InCl6 double perovskite via Cu+ doping[J]. Adv. Sci., 2022,9(7)2103724. doi: 10.1002/advs.202103724

    3. [3]

      ZHANG G D, DANG P P, TIAN L, YANG W, CHENG Z Y, LIAN H Z, LIN J. Boosting energy transfer from self-trapped exciton to Er3+ through Sb3+ doping in Cs2Na(Lu/Er)Cl6 double perovskites[J]. Adv. Opt. Mater., 2023,11(3)2202369. doi: 10.1002/adom.202202369

    4. [4]

      LIU Y Y, XIE Z, ZHENG W, HUANG P, GONG Z, ZHANG W, SHAO Z Q, YANG D F, CHEN X Y. High-efficiency narrow-band blue emission from lead-doped Cs2ZnBr4 nanocrystals[J]. Chem. Eng. J., 2023,460141683. doi: 10.1016/j.cej.2023.141683

    5. [5]

      YANG B, MAO X, HONG F, MENG W W, TANG Y X, XIA X S, YANG S Q, DENG W Q, HAN K L. Lead-free direct band gap double-perovskite nanocrystals with bright dual-color emission[J]. J. Am. Chem. Soc., 2018,140(49):17001-17006. doi: 10.1021/jacs.8b07424

    6. [6]

      XU H, LI J Z, LUO T, ZHANG W J, JIN H, GAO Y, HE T C. Nonlinear optical properties of Cs2AgIn1-xBixCl6 single crystals[J]. J. Phys. Chem. Lett., 2024,15(22):5848-5853. doi: 10.1021/acs.jpclett.4c00986

    7. [7]

      XU X, HAN P G, ZHENG D Y, DU K M, LI C X, LIU F, ZHANG R L, HAN K L. Boosting the upconversion and near-infrared emission via alloying Bi3+ in Cs2NaErCl6 double perovskite[J]. Laser Photon., Rev., 2022,16(11)2200318. doi: 10.1002/lpor.202200318

    8. [8]

      LIU Z Y, SUN Y Y, CAI T, YANG H J, ZHAO J, YIN T, HAO C Q, CHEN M J, SHI W W, LI X X, GUAN L, LI X, WANG X Z, TANG A W, CHEN O. Two-dimensional Cs2AgInxBi1-xCl6 alloyed double perovskite nanoplatelets for solution-processed light-emitting diodes[J]. Adv. Mater., 2023,35(19)2211235. doi: 10.1002/adma.202211235

    9. [9]

      SU X M, LIAN L Y, ZHANG C, ZHANG J B, LIU S S, ZHU S, GAO Y, LUO W, LI H L, ZHANG D L. Enhanced photoluminescence of colloidal lead-free double perovskite Cs2Ag1-xNaxInCl6 nanocrystals doped with manganese[J]. Adv. Opt. Mater., 2021,9(15)2001866. doi: 10.1002/adom.202001866

    10. [10]

      LIU Y, RONG X M, LI M Z, MOLOKEEV M S, ZHAO J, XIA Z G. Incorporating rare-earth terbium (Ⅲ) ions into Cs2AgInCl6: Bi nanocrystals toward tunable photoluminescence[J]. Angew. Chem. -Int. Edit., 2020,132(28):11731-11737. doi: 10.1002/ange.202004562

    11. [11]

      CHEN F, WANG X J, ZHANG X H, ZHANG C H. Bromide ions substitution-induced photoluminescence tuning in Cs2NaInCl6: Sb3+ double perovskite[J]. Opt. Mater., 2023,139113750. doi: 10.1016/j.optmat.2023.113750

    12. [12]

      TANG Y Q, TANG S Z, LUO M, GUO Y M, ZHENG Y P, LOU Y B, ZHAO Y X. All-inorganic lead-free metal halide perovskite quantum dots: Progress and prospects[J]. Chem. Commun., 2021,57(61):7465-7479. doi: 10.1039/D1CC01783G

    13. [13]

      ZHOU B, LIU Z X, FANG S F, ZHONG H Z, TIAN B B, WANG Y, LI H N, HU H L, SHI Y M. Efficient white photoluminescence from self-trapped excitons in Sb3+/Bi3+-codoped Cs2NaInCl6 double perovskites with tunable dual-emission[J]. ACS Energy Lett., 2021,6(9):3343-3351. doi: 10.1021/acsenergylett.1c01442

    14. [14]

      LI X, WANG D D, ZHONG Y, JIANG F, ZHAO D Q, SUN S Q, LU P, LU M, WANG Z Y, WU Z N, GAO Y B, ZHANG Y, YU W W, BAI X. Halide double perovskite nanocrystals doped with rare-earth ions for multifunctional applications[J]. Adv. Sci., 2023,10(20)2207571. doi: 10.1002/advs.202207571

    15. [15]

      WANG S, XIE Y, JIANG W C, LIU B H, SHI K Y, PAN K. Incorporation sodium ions into monodisperse lead-free double perovskite Cs2AgBiCl6 nanocrystals to improve optical properties[J]. Chin. Chem. Lett., 2024,35(3)108521. doi: 10.1016/j.cclet.2023.108521

    16. [16]

      MAJHER J D, GRAY M B, STROM T A, WOODWARD P M. Cs2NaBiCl6: Mn2+—A new orange-red halide double perovskite phosphor[J]. Chem. Mater., 2019,31(5):1738-1744. doi: 10.1021/acs.chemmater.8b05280

    17. [17]

      LEE W, CHOI D, KIM S. Colloidal synthesis of shape-controlled Cs2NaBiX6 (X=Cl, Br) double perovskite nanocrystals: Discrete optical transition by non-bonding characters and energy transfer to Mn dopants[J]. Chem. Mater., 2020,32(16):6864-6874. doi: 10.1021/acs.chemmater.0c01315

    18. [18]

      WANG M, LYU J, QIN X, YANG S W, LIU X, XU G Q. Direct electron transfer enables highly efficient dual emission modes of Mn2+-doped Cs2Na1-xAgxBiCl6 double perovskites[J]. J. Phys. Chem. Lett., 2022,13(40):9429-9434. doi: 10.1021/acs.jpclett.2c02694

    19. [19]

      ZHU Y Y, SUN G, WANG Y N, SUN Y X, XING X L, SHANG M M. Multiwavelength excitation in Ho3+-doped all-inorganic double perovskites achieved by codoping Mn2+ for warm-white LEDs and plant growth[J]. Inorg. Chem., 2024,63(9):4438-4446. doi: 10.1021/acs.inorgchem.4c00224

    20. [20]

      KARMAKAR A, BERNARD G M, POMINOV A, TABASSUM T, CHAKLASHIYA R, HAN S, JAIN S K, MICHAELIS V K. Triangulating dopant-level Mn (Ⅱ) insertion in a Cs2NaBiCl6 double perovskite using magnetic resonance spectroscopy[J]. J. Am. Chem. Soc., 2023,145(8):4485-4499. doi: 10.1021/jacs.2c10915

    21. [21]

      JEEVARAJ M, SIVAGANESH D, SARAVANAKUMAR S, BAHADUR S A, SUDHAHAR S, KUMAR M K. Broadband near infrared emission in Cr3+: Cs2AgBiCl6 double perovskite halides[J]. Opt. Mater., 2023,143114294. doi: 10.1016/j.optmat.2023.114294

    22. [22]

      YU Y, ZHOU W, LI C, HAN P G, LI H, ZHAO K. Tb3+ and Bi3+ co-doping of lead-free Cs2NaInCl6 double perovskite nanocrystals for tailoring optical properties[J]. Nanomaterials, 2023,13(3)549. doi: 10.3390/nano13030549

    23. [23]

      NIE J H, LI H N, FANG S F, ZHOU B, LIU Z X, CHEN F M, WANG Y, SHI Y M. Efficient red photoluminescence in holmium-doped Cs2NaInCl6 double perovskite[J]. Cell Rep. Phys. Sci., 2022,3(4)100820. doi: 10.1016/j.xcrp.2022.100820

    24. [24]

      HUANG A J, DUAN C K, WONG K L, TANNER P A. Downshifting in Cs2NaBiCl6: Er3+: Transforming ultraviolet into near infrared radiation[J]. J. Mater. Chem. C, 2022,10(8):2950-2954. doi: 10.1039/D1TC05587A

    25. [25]

      YAO M M, WANG L, YAO J S, WANG K H, CHEN C, ZHU B S, YANG J N, WANG J J, XU W P, ZHANG Q, YAO H B. Improving lead-free double perovskite Cs2NaBiCl6 nanocrystal optical properties via ion doping[J]. Adv. Opt. Mater., 2020,8(8)1901919. doi: 10.1002/adom.201901919

    26. [26]

      KE B, ZENG R S, ZHAO Z, WEI Q, XUE X G, BAI K, CAI C X, ZHOU W C, XIA Z G, ZOU B S. Homo-and heterovalent doping-mediated self-trapped exciton emission and energy transfer in Mn-doped Cs2Na1-xAgxBiCl6 double perovskites[J]. J. Phys. Chem. Lett., 2020,11(1):340-348. doi: 10.1021/acs.jpclett.9b03387

    27. [27]

      HAN P G, ZHANG X, LUO C, ZHOU W, YANG S Q, ZHAO J Z, DENG W Q, HAN K L. Manganese-doped, lead-free double perovskite nanocrystals for bright orange-red emission[J]. ACS Central Sci., 2020,6(4):566-572. doi: 10.1021/acscentsci.0c00056

    28. [28]

      CLARK S J, SEGALL M D, PICKARD C J, HASNIP P J, PROBERT M I J, REFSON K, PAYNE M C. First principles methods using CASTEP[J]. Z. Kristall., 2005,220(5/6):567-570.  

    29. [29]

      PAYNE M C, TETER M P, ALLAN D C, ARIAS T A, JOANNOPOULOS J D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients[J]. Rev. Mod. Phys., 1992,64(4):1045-1097. doi: 10.1103/RevModPhys.64.1045

    30. [30]

      KOHN W. Nobel lecture: Electronic structure of matter-wave functions and density functionals[J]. Rev. Mod. Phys., 1999,71(5):1253-1266. doi: 10.1103/RevModPhys.71.1253

    31. [31]

      MEDVEDEV M G, BUSHMARINOV I S, SUN J, PERDEW J P, LYSSENKO K A. Density functional theory is straying from the path toward the exact functional[J]. Science, 2017,355(6320):49-52. doi: 10.1126/science.aah5975

    32. [32]

      PFROMMER B G, CÔTÉ M, LOUIE S G, COHEN M L. Relaxation of crystals with the quasi-newton method[J]. J. Comput. Phys., 1997,131(1):233-240. doi: 10.1006/jcph.1996.5612

    33. [33]

      JIANG W S, SUN R J, WANG S, YU Y, QI L H, PAN K. Improved optical properties of lead-free double perovskite Cs2NaBiCl6 nanocrystal via K ions doping[J]. J. Alloy. Compd., 2023,960170871. doi: 10.1016/j.jallcom.2023.170871

    34. [34]

      LI X, SHEN X Y, LU M, WU J L, ZHONG Y, WU Z N, YU W W, GAO Y B, HU J H, ZHU J Y, ZHANG Y, BAI X. Wide-coverage and efficient NIR emission from single-component nanophosphors through shaping multiple metal-halide packages[J]. Angew. Chem.-Int. Edit., 2023,62(14)e202217832. doi: 10.1002/anie.202217832

    35. [35]

      VARNAKAVI N, RAJAVARAM R, GUPTA K, CHA P R, LEE N. Scintillation performance of Mn (Ⅱ)-doped Cs2NaBiCl6 double perovskite nanocrystals for X-ray imaging applications[J]. Adv. Opt. Mater., 2024,12(9)2301868. doi: 10.1002/adom.202301868

    36. [36]

      XU J C, GAO H, CHEN G Y, WANG K K, HU J H. Luminescence properties of K+ doped double perovskite Cs2AgInCl6[J]. Chinese J. Inorg. Chem., 2024,40(2):405-411. doi: 10.11862/CJIC.20230149

    37. [37]

      JIANG J T, NIU G M, SUI L Z, WANG X W, ZHANG Y T, CHE L, WU G R, YUAN K J, YANG X M. Transformation between the dark and bright self-trapped excitons in lead-free double-perovskite Cs2NaBiCl6 under pressure[J]. J. Phys. Chem. Lett., 2021,12(30):7285-7292. doi: 10.1021/acs.jpclett.1c02072

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    5. [5]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    6. [6]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    7. [7]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    11. [11]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    12. [12]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    13. [13]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    14. [14]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    15. [15]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    16. [16]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    17. [17]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    20. [20]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

Metrics
  • PDF Downloads(0)
  • Abstract views(290)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return