Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine
- Corresponding author: Xufeng LIU, nkxfliu@126.com
Citation:
Linjie ZHU, Xufeng LIU. Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(5): 939-947.
doi:
10.11862/CJIC.20240416
HELM M L, STEWART M P, BULLOCK R M, DUBOIS M R, DUBOIS D L. A synthetic nickel electrocatalyst with a turnover fre-quency above 100, 000 s-1 for H2 production[J]. Science, 2011,333(6044):863-866. doi: 10.1126/science.1205864
LV H J, RUBERU T P A, FLEISCHAUER V E, BRENNESSEL W W, NEIDIG M L, EISENBERG R. Catalytic light-driven generation of hydrogen from water by iron dithiolene complexes[J]. J. Am. Chem. Soc., 2016,138(36):11654-11663. doi: 10.1021/jacs.6b05040
AHMED M E, NAYEK A, KRIžAN A, COUTARD N, MOROZAN A, DEY S G, LOMOTH R, HAMMARSTRöM L, ARTERO V, DEY A. A bidirectional bioinspired[FeFe]-hydrogenase model[J]. J. Am. Chem. Soc., 2022,144(8):3614-3625. doi: 10.1021/jacs.1c12605
TARD C, PICKETT C J. Structural and functional analogues of the active sites of the[Fe]-, [NiFe]-, and[FeFe]-hydrogenases[J]. Chem. Rev., 2009,109(6):2245-2274. doi: 10.1021/cr800542q
LUBITZ W, OGATA H, RüDIGER O, REIjERSE E. Hydrogenases[J]. Chem. Rev., 2014,114(8):4081-4148. doi: 10.1021/cr4005814
SCHILTER D, CAMARA J M, HUYNH M T, HAMMES-SCHIFFER S, RAUCHFUSS T B. Hydrogenase enzymes and their synthetic mod-els: The role of metal hydrides[J]. Chem. Rev., 2016,116(15):8693-9749. doi: 10.1021/acs.chemrev.6b00180
HOGARTH G. An unexpected leading role for[Fe2(CO)6(μ-pdt)] in our understanding of[FeFe]-H2ases and the search for clean hydrogen production[J]. Coord. Chem. Rev., 2023,490215174. doi: 10.1016/j.ccr.2023.215174
GAO S, LIU Y, SHAO Y D, JIANG D Y, DUAN Q. Iron carbonyl com-pounds with aromatic dithiolate bridges as organometallic mimics of[FeFe] hydrogenases[J]. Coord. Chem. Rev., 2020,402213081. doi: 10.1016/j.ccr.2019.213081
FREY M. Hydrogenases: Hydrogen-activating enzymes[J]. ChemBioChem, 2002,3(2/3):153-160.
PETERS J W, LANZILOTTA W N, LEMON B J, SEEFELDT L C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution[J]. Science, 1998,282(5395):1853-1858. doi: 10.1126/science.282.5395.1853
NICOLET Y, PIRAS C, LEGRAND P, HATCHIKIAN C E, FONTECILLA-CAMPS J C. Desulfovibrio desulfuricans iron hydrog-enase: The structure shows unusual coordination to an active site Fe binuclear center[J]. Structure, 1999,7(1):13-23. doi: 10.1016/S0969-2126(99)80005-7
LAWRENCE J D, LI H X, RAUCHFUSS T B, BéNARD M, ROHMER M M. Diiron azadithiolates as models for the iron-only hydrogenase active site: Synthesis, structure, and stereoelectronics[J]. Angew. Chem.-Int. Edit., 2001,40(9):1768-1771. doi: 10.1002/1521-3773(20010504)40:9<1768::AID-ANIE17680>3.0.CO;2-E
LYON E J, GEORGAKAKI I P, REIBENSPIES J H, DARENBOURG M Y. Coordination sphere flexibility of active-site models for Fe-only hydrogenase: Studies in intra-and intermolecular diatomic ligand exchange[J]. J. Am. Chem. Soc., 2001,123(14):3268-3278. doi: 10.1021/ja003147z
GAO W M, EKSTRÖM J, LIU J H, CHEN C N, ERIKSSON L, WENG L H, ÅKERMARK B, SUN L C. Binuclear iron-sulfur com-plexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction[J]. Inorg. Chem., 2007,46(6):1981-1991. doi: 10.1021/ic0610278
CHEN F Y, HE J, YU X Y, WANG Z, MU C, LIU X F, LI Y L, JIANG Z Q, WU H K. Electrocatalytic properties of diiron ethanedi-thiolate complexes containing benzoate ester[J]. Appl. Organomet. Chem., 2018,32(12)e4549. doi: 10.1002/aoc.4549
WANG N, WANG M, ZHANG T T, LI P, LIU J H, SUN L C. A proton-hydride diiron complex with a base-containing diphosphine ligand relevant to the[FeFe]-hydrogenase active site[J]. Chem. Commun., 2008:5800-5802.
WANG N, WANG M, LIU J H, JIN K, CHEN L, SUN L C. Prepara-tion, facile deprotonation, and rapid H/D exchange of the μ-hydride diiron model complexes of the[FeFe]-hydrogenase containing a pen-dant amine in a chelating diphosphine ligand[J]. Inorg. Chem., 2009,48(24):11551-11558. doi: 10.1021/ic901154m
EZZAHER S, CAPON J F, GLOAGUEN F, PÉTILLON F Y, SCHOLLHAMMER P, TALARMIN J. Influence of a pendant amine in the second coordination sphere on proton transfer at a dissymmet-rically disubstituted diiron system related to the[2Fe]H subsite of[FeFe]H2ase[J]. Inorg. Chem., 2009,48(1):2-4. doi: 10.1021/ic801369u
ORTON G R F, BELAZREGUE S, COCKCROFT J K, HARTL F, HOGARTH G. Biomimics of[FeFe]-hydrogenases with a pendant amine: Diphosphine complexes[Fe2(CO)4{μ-S (CH2) nS}{κ2-(Ph2PCH2)2 NR}](n=2, 3; R=Me, Bn) towards H2 oxidation catalysts[J]. J. Organomet. Chem., 2023,991122673. doi: 10.1016/j.jorganchem.2023.122673
LYON E J, GEORGAKAKI I P, REIBENSPIES J H, DARENSBOURG M Y. Carbon monoxide and cyanide ligands in a classical organometallic complex model for Fe-only hydrogenase[J]. Angew. Chem.-Int. Edit., 1999,38(21):3178-3180. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4
KELES M, AYDIN Z, SERINDAG O. Synthesis of palladium com-plexes with bis (diphenylphosphinomethyl) amino ligands: A catalyst for the Heck reaction of aryl halide with methyl acrylate[J]. J. Organomet. Chem., 2007,692(10):1951-1955. doi: 10.1016/j.jorganchem.2007.01.003
CHONG D, GEORGAKAKI I P, MEJIA-RODRIGUEZ R, SANABRIA-CHINCHILLA J, SORIAGA M P, DARENSBOURG M Y. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: Structure/function relationships[J]. Dalton Trans., 2003:4158-4163.
LIU X F, LI Y L, LIU X H. Synthesis, characterization, electrocata-lytic properties, and antifungal activity of isoxazole-containing di-iron complexes[J]. Chinese J. Inorg. Chem., 2023,39(12):2367-2376. doi: 10.11862/CJIC.2023.204
LIN H M, LI J R, MU C, LI A, LIU X F, ZHAO P H, LI Y L, JIANG Z Q, WU H K. Synthesis, characterization, and electrochemistry of monophosphine-containing diiron propane-1, 2-dithiolate complexes related to the active site of[FeFe]-hydrogenases[J]. Appl. Organomet. Chem., 2019,33(11)e5196. doi: 10.1002/aoc.5196
YAN L, HU K, LIU X F, LI Y L, LIU X H, JIANG Z Q. Diiron ethane-1, 2-dithiolate complexes with 1, 2, 3-thiadiazole moiety: Synthesis, X-ray crystal structures, electrochemistry and fungicidal activity[J]. Appl. Organomet. Chem., 2021,35(2)e6084. doi: 10.1002/aoc.6084
LIU X F, LI Y L, LIU X H. Heterocyclic pyrazole-containing diiron dithiolato analogues: Synthesis, characterization, electrochemistry, and fungicidal activity[J]. Appl. Organomet. Chem., 2022,36(11)e6884. doi: 10.1002/aoc.6884
LIU X F, XU B, XU H, LI Y L. Diiron butane-1, 2-dithiolate com-plexes with phosphine ligands: Preparation, crystal structures, and electrochemical catalytic performance[J]. Chinese J. Inorg. Chem., 2022,38(12):2521-2529.
LIU X F, MA Z Y, JIN B, WANG D, ZHAO P H. Substituent effects of tertiary phosphines on the structures and electrochemical perfor-mances of azadithiolato-bridged diiron model complexes of[FeFe]-hydrogenases[J]. Appl. Organomet. Chem., 2022,36(7)e6751. doi: 10.1002/aoc.6751
EZZAHER S, CPAON J F, GLOAGUEN F, PÉTILLON F Y, SCHOLLHAMMER P, TALARMIN J. Evidence for the formation of terminal hydrides by protonation of an asymmetric iron hydrogenase active site mimic[J]. Inorg. Chem., 2007,46(9):3426-3428. doi: 10.1021/ic0703124
GLOAGUEN F, LAWRENCE J D, RAUCHFUSS T B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate[J]. J. Am. Chem. Soc., 2001,123(38):9476-9477. doi: 10.1021/ja016516f
BAI S F, MA J W, GUO Y N, DU X M, WANG Y L, LI Q L, LÜ S. Aminophosphine-substituted Fe/E (E=S, Se) carbonyls related to[FeFe]-hydrogenases: Synthesis, protonation, and electrocatalytic proton reduction[J]. J. Mol. Struct., 2023,1283135287. doi: 10.1016/j.molstruc.2023.135287
LÜ S, BAI S F, GAO X P, WANG Y L, LI Q L. Aminodiphosphine substituted 2Fe2Se complex as new precursor to single and double butterfly Fe/Se models related to FeFe hydrogenase models[J]. Mol. Struct., 2023,1290135939.
LIU X F, XU B, XU H, LI Y L. Synthesis, characterization, and elec-trocatalytic hydrogen evolution of diiron dithiolato pentacarbonyl complexes bearing phosphine ligand[J]. Chinese J. Inorg. Chem., 2023,39(8):1619-1627. doi: 10.11862/CJIC.2023.117
LIU X F, WANG S J, ZHAO P H. Di-iron dithiolato complexes with 3-bromothiophene moiety: Preparation, structures, and electrochem-istry[J]. Mol. Struct., 2023,1294136454.
LI Z M, XIAO Z Y, XU F F, ZENG X H, LIU X M. Enhancement in catalytic proton reduction by an internal base in a diiron pentacar-bonyl complex: Its synthesis, characterisation, inter-conversion and electrochemical investigation[J]. Dalton Trans., 2017,46(6):1864-1871.
ZHONG W, WU L, JIANG W D, LI Y L, MOOKAN N, LIU X M. Proton-coupled electron transfer in the reduction of diiron hexacar-bonyl complexes and its enhancement on the electrocatalytic reduc-tion of protons by a pendant basic group[J]. Dalton Trans., 2019,48(36):13711-13718.
XIAO Z Y, ZHONG W, LIU X M. Recent developments in electro-chemical investigations into iron carbonyl complexes relevant to the iron centres of hydrogenases[J]. Dalton Trans., 2022,51(1):40-47.
YAN L, YANG J, LÜ S, LIU X F, LI Y L, LIU X H, JIANG Z Q. Phosphine-containing diiron propane-1, 2-dithiolate derivatives: Syn-thesis, spectroscopy, X-ray crystal structures, and electrochemistry[J]. Catal. Lett., 2021,151(7):1857-1867.
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Weina Wang , Fengyi Liu , Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Hongjie SHEN , Haozhe MIAO , Yuhe YANG , Yinghua LI , Deguang HUANG , Xiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
Hexing SONG , Zan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Jinfeng Chu , Lan Jin , Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307