Citation: Linjie ZHU, Xufeng LIU. Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416 shu

Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine

  • Corresponding author: Xufeng LIU, nkxfliu@126.com
  • Received Date: 22 November 2024
    Revised Date: 27 February 2025

Figures(7)

  • To explore new biomimics for the [FeFe]-hydrogenases active site, two di-iron complexes containing a phosphine ligand with a pendant amine were synthesized and characterized. Reaction of complex [Fe2(CO)6(μ-pdt)] (1), where pdt=SCH2CH2CH2S, with a diphosphine ligand (Ph2PCH2)2NC10H15 (dppad) and Me3NO·2H2O gave a major product [Fe2(CO)5(mpad)(μ-pdt)] (2) in 60% yield together with a minor product [Fe2(CO)4(κ2-dppad)(μ-pdt)] (3) in 6% yield, where mpad=Ph2PCH2NHC10H15. Complexes 2 and 3 were identified by elemental analysis, IR, 1H NMR, 31P NMR, and single-crystal X-ray diffraction analysis. The crystal structure of complex 2 contains an apicallycoordinated phosphine ligand mpad whereas complex 3·0.5CH2Cl2 contains a chelated diphosphine ligand dppad in an apical-basal position. The Fe-Fe bond length in complex 2 [0.251 66(6) nm] is notably shorter than that in complex 3·0.5CH2Cl2 [0.255 88(6) nm]. Furthermore, the electrochemical properties of complexes 2 and 3 were investigated by cyclic voltammetry (CV), revealing that their CV curves contained two reduction peaks and one oxidation peak within the solvent window. The electrocatalytic properties of both complexes showed that they can catalyze the reduction of protons to H2 with HOAc as a proton source. For comparison, the catalytic efficiency (turnover frequency) of 3 was slightly better than that of 2.
  • 加载中
    1. [1]

      HELM M L, STEWART M P, BULLOCK R M, DUBOIS M R, DUBOIS D L. A synthetic nickel electrocatalyst with a turnover fre-quency above 100, 000 s-1 for H2 production[J]. Science, 2011,333(6044):863-866. doi: 10.1126/science.1205864

    2. [2]

      LV H J, RUBERU T P A, FLEISCHAUER V E, BRENNESSEL W W, NEIDIG M L, EISENBERG R. Catalytic light-driven generation of hydrogen from water by iron dithiolene complexes[J]. J. Am. Chem. Soc., 2016,138(36):11654-11663. doi: 10.1021/jacs.6b05040

    3. [3]

      AHMED M E, NAYEK A, KRIžAN A, COUTARD N, MOROZAN A, DEY S G, LOMOTH R, HAMMARSTRöM L, ARTERO V, DEY A. A bidirectional bioinspired[FeFe]-hydrogenase model[J]. J. Am. Chem. Soc., 2022,144(8):3614-3625. doi: 10.1021/jacs.1c12605

    4. [4]

      TARD C, PICKETT C J. Structural and functional analogues of the active sites of the[Fe]-, [NiFe]-, and[FeFe]-hydrogenases[J]. Chem. Rev., 2009,109(6):2245-2274. doi: 10.1021/cr800542q

    5. [5]

      LUBITZ W, OGATA H, RüDIGER O, REIjERSE E. Hydrogenases[J]. Chem. Rev., 2014,114(8):4081-4148. doi: 10.1021/cr4005814

    6. [6]

      SCHILTER D, CAMARA J M, HUYNH M T, HAMMES-SCHIFFER S, RAUCHFUSS T B. Hydrogenase enzymes and their synthetic mod-els: The role of metal hydrides[J]. Chem. Rev., 2016,116(15):8693-9749. doi: 10.1021/acs.chemrev.6b00180

    7. [7]

      HOGARTH G. An unexpected leading role for[Fe2(CO)6(μ-pdt)] in our understanding of[FeFe]-H2ases and the search for clean hydrogen production[J]. Coord. Chem. Rev., 2023,490215174. doi: 10.1016/j.ccr.2023.215174

    8. [8]

      GAO S, LIU Y, SHAO Y D, JIANG D Y, DUAN Q. Iron carbonyl com-pounds with aromatic dithiolate bridges as organometallic mimics of[FeFe] hydrogenases[J]. Coord. Chem. Rev., 2020,402213081. doi: 10.1016/j.ccr.2019.213081

    9. [9]

      FREY M. Hydrogenases: Hydrogen-activating enzymes[J]. ChemBioChem, 2002,3(2/3):153-160.  

    10. [10]

      PETERS J W, LANZILOTTA W N, LEMON B J, SEEFELDT L C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution[J]. Science, 1998,282(5395):1853-1858. doi: 10.1126/science.282.5395.1853

    11. [11]

      NICOLET Y, PIRAS C, LEGRAND P, HATCHIKIAN C E, FONTECILLA-CAMPS J C. Desulfovibrio desulfuricans iron hydrog-enase: The structure shows unusual coordination to an active site Fe binuclear center[J]. Structure, 1999,7(1):13-23. doi: 10.1016/S0969-2126(99)80005-7

    12. [12]

      LAWRENCE J D, LI H X, RAUCHFUSS T B, BéNARD M, ROHMER M M. Diiron azadithiolates as models for the iron-only hydrogenase active site: Synthesis, structure, and stereoelectronics[J]. Angew. Chem.-Int. Edit., 2001,40(9):1768-1771. doi: 10.1002/1521-3773(20010504)40:9<1768::AID-ANIE17680>3.0.CO;2-E

    13. [13]

      LYON E J, GEORGAKAKI I P, REIBENSPIES J H, DARENBOURG M Y. Coordination sphere flexibility of active-site models for Fe-only hydrogenase: Studies in intra-and intermolecular diatomic ligand exchange[J]. J. Am. Chem. Soc., 2001,123(14):3268-3278. doi: 10.1021/ja003147z

    14. [14]

      GAO W M, EKSTRÖM J, LIU J H, CHEN C N, ERIKSSON L, WENG L H, ÅKERMARK B, SUN L C. Binuclear iron-sulfur com-plexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction[J]. Inorg. Chem., 2007,46(6):1981-1991. doi: 10.1021/ic0610278

    15. [15]

      CHEN F Y, HE J, YU X Y, WANG Z, MU C, LIU X F, LI Y L, JIANG Z Q, WU H K. Electrocatalytic properties of diiron ethanedi-thiolate complexes containing benzoate ester[J]. Appl. Organomet. Chem., 2018,32(12)e4549. doi: 10.1002/aoc.4549

    16. [16]

      WANG N, WANG M, ZHANG T T, LI P, LIU J H, SUN L C. A proton-hydride diiron complex with a base-containing diphosphine ligand relevant to the[FeFe]-hydrogenase active site[J]. Chem. Commun., 2008:5800-5802.  

    17. [17]

      WANG N, WANG M, LIU J H, JIN K, CHEN L, SUN L C. Prepara-tion, facile deprotonation, and rapid H/D exchange of the μ-hydride diiron model complexes of the[FeFe]-hydrogenase containing a pen-dant amine in a chelating diphosphine ligand[J]. Inorg. Chem., 2009,48(24):11551-11558. doi: 10.1021/ic901154m

    18. [18]

      EZZAHER S, CAPON J F, GLOAGUEN F, PÉTILLON F Y, SCHOLLHAMMER P, TALARMIN J. Influence of a pendant amine in the second coordination sphere on proton transfer at a dissymmet-rically disubstituted diiron system related to the[2Fe]H subsite of[FeFe]H2ase[J]. Inorg. Chem., 2009,48(1):2-4. doi: 10.1021/ic801369u

    19. [19]

      ORTON G R F, BELAZREGUE S, COCKCROFT J K, HARTL F, HOGARTH G. Biomimics of[FeFe]-hydrogenases with a pendant amine: Diphosphine complexes[Fe2(CO)4{μ-S (CH2) nS}{κ2-(Ph2PCH2)2 NR}](n=2, 3; R=Me, Bn) towards H2 oxidation catalysts[J]. J. Organomet. Chem., 2023,991122673. doi: 10.1016/j.jorganchem.2023.122673

    20. [20]

      LYON E J, GEORGAKAKI I P, REIBENSPIES J H, DARENSBOURG M Y. Carbon monoxide and cyanide ligands in a classical organometallic complex model for Fe-only hydrogenase[J]. Angew. Chem.-Int. Edit., 1999,38(21):3178-3180. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4

    21. [21]

      KELES M, AYDIN Z, SERINDAG O. Synthesis of palladium com-plexes with bis (diphenylphosphinomethyl) amino ligands: A catalyst for the Heck reaction of aryl halide with methyl acrylate[J]. J. Organomet. Chem., 2007,692(10):1951-1955. doi: 10.1016/j.jorganchem.2007.01.003

    22. [22]

      CHONG D, GEORGAKAKI I P, MEJIA-RODRIGUEZ R, SANABRIA-CHINCHILLA J, SORIAGA M P, DARENSBOURG M Y. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: Structure/function relationships[J]. Dalton Trans., 2003:4158-4163.  

    23. [23]

      LIU X F, LI Y L, LIU X H. Synthesis, characterization, electrocata-lytic properties, and antifungal activity of isoxazole-containing di-iron complexes[J]. Chinese J. Inorg. Chem., 2023,39(12):2367-2376. doi: 10.11862/CJIC.2023.204

    24. [24]

      LIN H M, LI J R, MU C, LI A, LIU X F, ZHAO P H, LI Y L, JIANG Z Q, WU H K. Synthesis, characterization, and electrochemistry of monophosphine-containing diiron propane-1, 2-dithiolate complexes related to the active site of[FeFe]-hydrogenases[J]. Appl. Organomet. Chem., 2019,33(11)e5196. doi: 10.1002/aoc.5196

    25. [25]

      YAN L, HU K, LIU X F, LI Y L, LIU X H, JIANG Z Q. Diiron ethane-1, 2-dithiolate complexes with 1, 2, 3-thiadiazole moiety: Synthesis, X-ray crystal structures, electrochemistry and fungicidal activity[J]. Appl. Organomet. Chem., 2021,35(2)e6084. doi: 10.1002/aoc.6084

    26. [26]

      LIU X F, LI Y L, LIU X H. Heterocyclic pyrazole-containing diiron dithiolato analogues: Synthesis, characterization, electrochemistry, and fungicidal activity[J]. Appl. Organomet. Chem., 2022,36(11)e6884. doi: 10.1002/aoc.6884

    27. [27]

      LIU X F, XU B, XU H, LI Y L. Diiron butane-1, 2-dithiolate com-plexes with phosphine ligands: Preparation, crystal structures, and electrochemical catalytic performance[J]. Chinese J. Inorg. Chem., 2022,38(12):2521-2529.  

    28. [28]

      LIU X F, MA Z Y, JIN B, WANG D, ZHAO P H. Substituent effects of tertiary phosphines on the structures and electrochemical perfor-mances of azadithiolato-bridged diiron model complexes of[FeFe]-hydrogenases[J]. Appl. Organomet. Chem., 2022,36(7)e6751. doi: 10.1002/aoc.6751

    29. [29]

      EZZAHER S, CPAON J F, GLOAGUEN F, PÉTILLON F Y, SCHOLLHAMMER P, TALARMIN J. Evidence for the formation of terminal hydrides by protonation of an asymmetric iron hydrogenase active site mimic[J]. Inorg. Chem., 2007,46(9):3426-3428. doi: 10.1021/ic0703124

    30. [30]

      GLOAGUEN F, LAWRENCE J D, RAUCHFUSS T B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate[J]. J. Am. Chem. Soc., 2001,123(38):9476-9477. doi: 10.1021/ja016516f

    31. [31]

      BAI S F, MA J W, GUO Y N, DU X M, WANG Y L, LI Q L, LÜ S. Aminophosphine-substituted Fe/E (E=S, Se) carbonyls related to[FeFe]-hydrogenases: Synthesis, protonation, and electrocatalytic proton reduction[J]. J. Mol. Struct., 2023,1283135287. doi: 10.1016/j.molstruc.2023.135287

    32. [32]

      LÜ S, BAI S F, GAO X P, WANG Y L, LI Q L. Aminodiphosphine substituted 2Fe2Se complex as new precursor to single and double butterfly Fe/Se models related to FeFe hydrogenase models[J]. Mol. Struct., 2023,1290135939.  

    33. [33]

      LIU X F, XU B, XU H, LI Y L. Synthesis, characterization, and elec-trocatalytic hydrogen evolution of diiron dithiolato pentacarbonyl complexes bearing phosphine ligand[J]. Chinese J. Inorg. Chem., 2023,39(8):1619-1627. doi: 10.11862/CJIC.2023.117

    34. [34]

      LIU X F, WANG S J, ZHAO P H. Di-iron dithiolato complexes with 3-bromothiophene moiety: Preparation, structures, and electrochem-istry[J]. Mol. Struct., 2023,1294136454.  

    35. [35]

      LI Z M, XIAO Z Y, XU F F, ZENG X H, LIU X M. Enhancement in catalytic proton reduction by an internal base in a diiron pentacar-bonyl complex: Its synthesis, characterisation, inter-conversion and electrochemical investigation[J]. Dalton Trans., 2017,46(6):1864-1871.  

    36. [36]

      ZHONG W, WU L, JIANG W D, LI Y L, MOOKAN N, LIU X M. Proton-coupled electron transfer in the reduction of diiron hexacar-bonyl complexes and its enhancement on the electrocatalytic reduc-tion of protons by a pendant basic group[J]. Dalton Trans., 2019,48(36):13711-13718.

    37. [37]

      XIAO Z Y, ZHONG W, LIU X M. Recent developments in electro-chemical investigations into iron carbonyl complexes relevant to the iron centres of hydrogenases[J]. Dalton Trans., 2022,51(1):40-47.  

    38. [38]

      YAN L, YANG J, LÜ S, LIU X F, LI Y L, LIU X H, JIANG Z Q. Phosphine-containing diiron propane-1, 2-dithiolate derivatives: Syn-thesis, spectroscopy, X-ray crystal structures, and electrochemistry[J]. Catal. Lett., 2021,151(7):1857-1867.

  • 加载中
    1. [1]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    6. [6]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    7. [7]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    8. [8]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    9. [9]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    13. [13]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    14. [14]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    20. [20]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

Metrics
  • PDF Downloads(0)
  • Abstract views(68)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return